This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A020744 #29 Oct 30 2024 21:22:22 %S A020744 8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52, %T A020744 54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86,88,90,92,94,96,98, %U A020744 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138 %N A020744 Pisot sequences P(8,10), T(8,10). %C A020744 Conjecturally, even sums of four primes. - _Charles R Greathouse IV_, Feb 16 2012 %H A020744 Colin Barker, <a href="/A020744/b020744.txt">Table of n, a(n) for n = 0..1000</a> %H A020744 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>. %H A020744 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1). %F A020744 a(n) = 2*n + 8. %F A020744 a(n) = 2*a(n-1) - a(n-2). %F A020744 From _Elmo R. Oliveira_, Oct 30 2024: (Start) %F A020744 G.f.: 2*(4 - 3*x)/(1 - x)^2. %F A020744 E.g.f.: 2*(4 + x)*exp(x). %F A020744 a(n) = 2*A020705(n) = A028563(n+1) - A028563(n). (End) %t A020744 LinearRecurrence[{2,-1},{8,10},70] (* _Harvey P. Dale_, Jul 19 2015 *) %t A020744 P[x_, y_, z_] := Block[{a}, a[0] = x; a[1] = y; a[n_] := a[n] = Ceiling[a[n - 1]^2/a[n - 2] - 1/2]; Table[a[n], {n, 0, z}]]; P[8, 10, 65] (* or *) %t A020744 T[x_, y_, z_] := Block[{a}, a[0] = x; a[1] = y; a[n_] := a[n] = Floor[a[n - 1]^2/a[n - 2]]; Table[a[n], {n, 0, z}]]; T[8, 10, 65] (* _Michael De Vlieger_, Aug 08 2016 *) %o A020744 (PARI) a(n)=2*n+8 \\ _Charles R Greathouse IV_, Feb 16 2012 %o A020744 (PARI) pisotP(nmax, a1, a2) = { %o A020744 a=vector(nmax); a[1]=a1; a[2]=a2; %o A020744 for(n=3, nmax, a[n] = ceil(a[n-1]^2/a[n-2]-1/2)); %o A020744 a %o A020744 } %o A020744 pisotP(50, 8, 10) \\ _Colin Barker_, Aug 08 2016 %Y A020744 Subsequence of A005843, A020739. See A008776 for definitions of Pisot sequences. %Y A020744 Cf. A020705, A028563. %K A020744 nonn,easy %O A020744 0,1 %A A020744 _David W. Wilson_