This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A020748 #16 Dec 26 2016 11:13:13 %S A020748 4,10,25,62,153,377,928,2284,5621,13833,34042,83774,206159,507335, %T A020748 1248496,3072412,7560869,18606469,45788478,112680418,277294139, %U A020748 682390435,1679287948,4132543288,10169735361,25026602289,61587720810,151560619806,372974046999 %N A020748 Pisot sequence T(4,10), a(n) = floor(a(n-1)^2/a(n-2)). %H A020748 Colin Barker, <a href="/A020748/b020748.txt">Table of n, a(n) for n = 0..1000</a> %F A020748 G.f.: (-3x^5+2x^4+x^3-x^2-2x+4)/[(1-x)(1-2x-x^2-2x^5)] (conjectured). - _Ralf Stephan_, May 12 2004 %F A020748 Note the warning in A010925 from Pab Ter (pabrlos(AT)yahoo.com), May 23 2004: [A010925] and other examples show that it is essential to reject conjectured generating functions for Pisot sequences until a proof or reference is provided. - _N. J. A. Sloane_, Jul 26 2016 %t A020748 RecurrenceTable[{a[0]==4,a[1]==10,a[n]==Floor[a[n-1]^2/a[n-2]]},a,{n,30}] (* _Harvey P. Dale_, Dec 26 2016 *) %o A020748 (PARI) pisotT(nmax, a1, a2) = { %o A020748 a=vector(nmax); a[1]=a1; a[2]=a2; %o A020748 for(n=3, nmax, a[n] = floor(a[n-1]^2/a[n-2])); %o A020748 a %o A020748 } %o A020748 pisotT(50, 4, 10) \\ _Colin Barker_, Jul 29 2016 %Y A020748 See A008776 for definitions of Pisot sequences. %K A020748 nonn %O A020748 0,1 %A A020748 _David W. Wilson_