cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A020757 Numbers that are not the sum of two triangular numbers.

This page as a plain text file.
%I A020757 #63 Aug 08 2024 01:45:23
%S A020757 5,8,14,17,19,23,26,32,33,35,40,41,44,47,50,52,53,54,59,62,63,68,71,
%T A020757 74,75,77,80,82,85,86,89,95,96,98,103,104,107,109,113,116,117,118,122,
%U A020757 124,125,128,129,131,134,138,140,143,145,147,149,152,155,158,161,162,166,167
%N A020757 Numbers that are not the sum of two triangular numbers.
%C A020757 A052343(a(n)) = 0. - _Reinhard Zumkeller_, May 15 2006
%C A020757 Numbers of the form (p^(2k+1)s-1)/4, where p is a prime number of the form 4n+3, and s is a number of the form 4m+3 and prime to p, are not expressible as the sum of two triangular numbers. See Satyanarayana (1961), Theorem 2. - _Hans J. H. Tuenter_, Oct 11 2009
%C A020757 An integer n is in this sequence if and only if at least one 4k+3 prime factor in the canonical form of 4n+1 occurs with an odd exponent. - _Ant King_, Dec 02 2010
%C A020757 A nonnegative integer n is in this sequence if and only if A000729(n) = 0. - _Michael Somos_, Feb 13 2011
%C A020757 4*a(n) + 1 are terms of A022544. - _XU Pingya_, Aug 05 2018 [Actually, k is here if and only if 4*k + 1 is in A022544. - _Jianing Song_, Feb 09 2021]
%C A020757 Integers m such that the smallest number of triangular numbers which sum to m is 3, hence A061336(a(n)) = 3. - _Bernard Schott_, Jul 21 2022
%H A020757 T. D. Noe, <a href="/A020757/b020757.txt">Table of n, a(n) for n = 1..10000</a>
%H A020757 John A. Ewell, <a href="http://www.jstor.org/stable/2324243">On Sums of Triangular Numbers and Sums of Squares</a>, The American Mathematical Monthly, Vol. 99, No. 8 (October 1992), pp. 752-757. [From _Ant King_, Dec 02 2010]
%H A020757 U. V. Satyanarayana, <a href="http://www.jstor.org/stable/3614771">On the representation of numbers as sums of triangular numbers</a>, The Mathematical Gazette, 45(351):40-43, February 1961. [From _Hans J. H. Tuenter_, Oct 11 2009]
%e A020757 3 = 0 + 3 and 7 = 1 + 6 are not terms, but 8 = 1 + 1 + 6 is a term.
%t A020757 data = Reduce[m (m + 1) + n (n + 1) == 2 # && 0 <= m && 0 <= n, {m, n}, Integers] & /@ Range[167]; Position[data, False] // Flatten  (* _Ant King_, Dec 05 2010 *)
%t A020757 t = Array[PolygonalNumber, 18, 0]; Complement[Range@ 169, Flatten[ Outer[ Plus, t, t]]] (* _Robert G. Wilson v_, Aug 07 2024 *)
%o A020757 (Haskell)
%o A020757 a020757 n = a020757_list !! (n-1)
%o A020757 a020757_list = filter ((== 0) . a052343) [0..]
%o A020757 -- _Reinhard Zumkeller_, Jul 25 2014
%o A020757 (PARI) is(n)=my(m9=n%9,f); if(m9==5 || m9==8, return(1)); f=factor(4*n+1); for(i=1,#f~, if(f[i,1]%4==3 && f[i,2]%2, return(1))); 0 \\ _Charles R Greathouse IV_, Mar 17 2022
%Y A020757 Complement of A020756.
%Y A020757 Cf. A000217, A052343, A022544, A061336.
%Y A020757 Numbers k such that the coefficient of x^k in the expansion of Product_{j>=1} (1 - x^j)^m is zero: A090864 (m=1), A213250 (m=2), A014132 (m=3), A302056 (m=4), A302057 (m=5), this sequence (m=6), A322430 (m=8), A322431 (m=10), A322432 (m=14), A322043 (m=15), A322433 (m=26).
%K A020757 nonn
%O A020757 1,1
%A A020757 _David W. Wilson_