This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A020762 #49 Feb 03 2025 12:41:25 %S A020762 4,4,7,2,1,3,5,9,5,4,9,9,9,5,7,9,3,9,2,8,1,8,3,4,7,3,3,7,4,6,2,5,5,2, %T A020762 4,7,0,8,8,1,2,3,6,7,1,9,2,2,3,0,5,1,4,4,8,5,4,1,7,9,4,4,9,0,8,2,1,0, %U A020762 4,1,8,5,1,2,7,5,6,0,9,7,9,8,8,2,8,8,2,8,8,1,6,7,5,7,5,6,4,5,4,9,9,3,9,0,1 %N A020762 Decimal expansion of 1/sqrt(5). %C A020762 This number is the cosine of the central angle of a regular icosahedron; see A105199 for the angle itself. - _Clark Kimberling_, Feb 10 2009 %C A020762 Largest radius of ten circles tangent to a circle of radius 1. - _Charles R Greathouse IV_, Jan 14 2013 %H A020762 Ivan Panchenko, <a href="/A020762/b020762.txt">Table of n, a(n) for n = 0..1000</a> %H A020762 Hideyuki Ohtsuka, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Problems/ElemProbSolnMay14.pdf">Problem B-1148</a>, Elementary Problems and Solutions, The Fibonacci Quarterly, Vol. 52, No. 2 (2014), p. 179; <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Problems/ElemProbSolnMay15.pdf">The Exact Value of an Infinite Series</a>, Solution to B-1148, ibid., Vol. 53, No. 2 (2015), pp. 183-184. %H A020762 <a href="/index/Al#algebraic_02">Index entries for algebraic numbers, degree 2</a>. %F A020762 Equals cos(arctan(2)). - _Clark Kimberling_, Feb 10 2009 %F A020762 Equals lim_{n -> infinity} A000045(n)/A000032(n). - _Bruno Berselli_, Jan 22 2018 %F A020762 From _Christian Katzmann_, Mar 19 2018: (Start) %F A020762 Equals Sum_{n>=0} (2*n)!/(n!^2*3^(2*n+1)). %F A020762 Equals Sum_{n>=0} 5*(2*n+1)!/(n!^2*3^(2*n+3)). (End) %F A020762 Equals A010476/10. - _R. J. Mathar_, Jan 14 2021 %F A020762 Equals Sum_{k>=1} F(2^(k-1))/(L(2^k)+1) = Sum_{k>=0} A058635(k)/(A001566(k)+1), where F(k) = A000045(k) is the k-th Fibonacci number and L(k) = A000032(k) is the k-th Lucas number (Ohtsuka, 2014). - _Amiram Eldar_, Dec 09 2021 %e A020762 0.447213595499957939281834733746255247088123671922305144854179449082104... %t A020762 RealDigits[5^(-1/2), 10, 150] (* _Stefan Steinerberger_, Apr 08 2006 *) %t A020762 Circs[n_] := With[{r = Sin[Pi/n]/(1 - Sin[Pi/n])}, Graphics[Append[ %t A020762 Table[Circle[(r + 1) {Sin[2 Pi k/n], Cos[2 Pi k/n]}, r], {k, n}], %t A020762 {Blue, Circle[{0, 0}, 1]}]]] %t A020762 Circs[10] (* _Charles R Greathouse IV_, Jan 14 2013 *) %o A020762 (PARI) 1/sqrt(5) \\ _Charles R Greathouse IV_, Jan 14 2013 %Y A020762 Cf. A000032, A000045, A010476, A001566, A058635, A105199. %K A020762 nonn,cons %O A020762 0,1 %A A020762 _N. J. A. Sloane_ %E A020762 More terms from _Stefan Steinerberger_, Apr 08 2006