This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A020926 #27 Mar 25 2022 09:14:07 %S A020926 1,30,510,6460,67830,624036,5200300,40116600,290845350,2003601300, %T A020926 13223768580,84151254600,518932736700,3113596420200,18236779032600, %U A020926 104557533120240,588136123801350,3252046802195700,17705588145287700,95051052148386600,503770576386448980 %N A020926 Expansion of 1/(1-4*x)^(15/2). %H A020926 Vincenzo Librandi, <a href="/A020926/b020926.txt">Table of n, a(n) for n = 0..200</a> %F A020926 a(n) = binomial(n+7, 7)*A000984(n+7)/A000984(7), A000984: central binomial coefficients. - _Wolfdieter Lang_ %F A020926 a(n) = ((2*n+13)*(2*n+11)*(2*n+9)*(2*n+7)*(2*n+5)*(2*n+3)*(2*n+1)/135135) * binomial(2*n, n). - _Vincenzo Librandi_, Jul 05 2013 %F A020926 Boas-Buck recurrence: a(n) = (30/n)*Sum_{k=0..n-1} 4^(n-k-1)*a(k), n >= 1, a(0) = 1. Proof from a(n) = A046521(n+7, 7). See a comment there. - _Wolfdieter Lang_, Aug 10 2017 %F A020926 From _Amiram Eldar_, Mar 25 2022: (Start) %F A020926 Sum_{n>=0} 1/a(n) = 2106*sqrt(3)*Pi - 13234624/1155. %F A020926 Sum_{n>=0} (-1)^n/a(n) = 162500*sqrt(5)*log(phi) - 121172896/693, where phi is the golden ratio (A001622). (End) %t A020926 CoefficientList[Series[1/(1-4x)^(15/2), {x,0,20}], x] (* _Vincenzo Librandi_, Jul 05 2013 *) %o A020926 (Magma) [&*[2*n+i: i in [1..13 by 2]]*Binomial(2*n, n)/135135: n in [0..20]]; // _Vincenzo Librandi_, Jul 05 2013 %o A020926 (PARI) vector(20, n, n--; m=n+7; binomial(2*m,m)*binomial(m,7)/3432) \\ _G. C. Greubel_, Jul 21 2019 %o A020926 (Sage) [binomial(2*(n+7), n+7)*binomial(n+7,7)/3432 for n in (0..20)] # _G. C. Greubel_, Jul 21 2019 %o A020926 (GAP) List([0..20], n-> Binomial(2*(n+7), n+7)*Binomial(n+7,7)/3432); # _G. C. Greubel_, Jul 21 2019 %Y A020926 Cf. A000984, A001622, A020924, A046521 (eighth column). %K A020926 nonn,easy %O A020926 0,2 %A A020926 _N. J. A. Sloane_