cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A020929 Expansion of (1-4*x)^(17/2).

This page as a plain text file.
%I A020929 #21 Mar 25 2022 09:14:17
%S A020929 1,-34,510,-4420,24310,-87516,204204,-291720,218790,-48620,-9724,
%T A020929 -5304,-4420,-4760,-6120,-8976,-14586,-25740,-48620,-97240,-204204,
%U A020929 -447304,-1016600,-2386800,-5768100,-14304888,-36312408,-94143280,-248807240,-669205680,-1829162192
%N A020929 Expansion of (1-4*x)^(17/2).
%F A020929 D-finite with recurrence: n*a(n) +2*(-2*n+19)*a(n-1)=0. - _R. J. Mathar_, Jan 17 2020
%F A020929 From _Amiram Eldar_, Mar 25 2022: (Start)
%F A020929 a(n) = (-4)^n*binomial(17/2, n).
%F A020929 Sum_{n>=0} 1/a(n) = 49600/51051 - 38*Pi/(3^11*sqrt(3)).
%F A020929 Sum_{n>=0} (-1)^n/a(n) = 1542987607648/1495634765625 - 76*log(phi)/(5^10*sqrt(5)), where phi is the golden ratio (A001622). (End)
%t A020929 CoefficientList[Series[(1 - 4 x)^(17/2), {x, 0, 33}], x] (* _Vincenzo Librandi_, Jan 18 2020 *)
%Y A020929 Cf. A001622, A002420, A002421, A002422, A002423, A002424, A020923, A020925, A020927.
%K A020929 sign
%O A020929 0,2
%A A020929 _N. J. A. Sloane_