This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A020995 #66 Jan 05 2025 19:51:34 %S A020995 0,1,5,10,31,35,62,72,175,180,216,251,252,360,494,504,540,946,1188, %T A020995 2222 %N A020995 Numbers k such that the sum of the digits of Fibonacci(k) is k. %C A020995 Since the number of digits in the k-th Fibonacci number ~ k*log_10(Golden Ratio), theoretically this sequence is infinite, but then the average density of those digits = ~ 0.208987. - _Robert G. Wilson v_ %C A020995 Robert Dawson of Saint Mary's University says it is likely that 2222 is the last term, as (assuming that the digits are equally distributed) the expected digit sum is ~ 0.9*k. - _Stefan Steinerberger_, Mar 12 2006 [Assuming that the average digit is (0+1+2+...+9)/10 = 9/2, the expected digit sum is ~ (9/2)*log_10((1+sqrt(5))/2)*k = 0.94044438...*k. - _Jon E. Schoenfield_, Aug 28 2022] %C A020995 Bankoff's short paper lists the first seven terms. - _T. D. Noe_, Mar 19 2012 %C A020995 No more terms < 150000. - _Manfred Scheucher_, Aug 03 2015 %C A020995 If it exists, a(21) > 10^6. - _Robert Price_, May 26 2019 %D A020995 Alfred S. Posamentier & Ingmar Lehmann, The (Fabulous) Fibonacci Numbers, Prometheus Books, NY, 2007, page 209. %H A020995 Leon Bankoff, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/14-1/bankoff1.pdf">A Fibonacci Curiosity</a>, Fibonacci Quarterly 14, Feb. 1976, p. 17. %H A020995 Pat Ballew, <a href="http://pballew.blogspot.fr/2012/08/fibonacci-dgit-sums.html">Fibonacci Digit Sums</a>, Pat's Blog, Sunday, 5 August 2012. %H A020995 Ron Knott, <a href="http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibmaths.html#digitsums">The Mathematical Magic of the Fibonacci Numbers: Digit Sums</a> %H A020995 Manfred Scheucher, <a href="/A020995/a020995.sage.txt">Sage Script</a> %H A020995 David Terr, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/34-4/terr.pdf">On the Sums of Digits of Fibonacci Numbers,</a> Fibonacci Quarterly 34, Aug. 1996, pp. 349-355. %e A020995 Fibonacci(10) = 55 and 5+5 = 10. %t A020995 Do[ If[ Apply[ Plus, IntegerDigits[ Fibonacci[n]]] == n, Print[n]], {n, 1, 10^5} ] (* _Sven Simon_ *) %t A020995 Do[ If[ Mod[ Fibonacci[n], 9] == Mod[n, 9], If[ Plus @@ IntegerDigits[ Fibonacci[n]] == n, Print[n]]], {n, 0, 10^6}] (* _Robert G. Wilson v_ *) %t A020995 Select[Range[0, 10^5], Plus @@ IntegerDigits[Fibonacci[ # ]] == # &] (* _Ron Knott_, Oct 30 2010 *) %o A020995 (PARI) isok(n) = sumdigits(fibonacci(n)) == n; \\ _Michel Marcus_, Feb 18 2015 %Y A020995 Cf. A000045, A067515, A004090. %K A020995 nonn,base,more %O A020995 1,3 %A A020995 _Sven Simon_