This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A021027 #14 Jul 08 2025 07:57:54 %S A021027 0,4,3,4,7,8,2,6,0,8,6,9,5,6,5,2,1,7,3,9,1,3,0,4,3,4,7,8,2,6,0,8,6,9, %T A021027 5,6,5,2,1,7,3,9,1,3,0,4,3,4,7,8,2,6,0,8,6,9,5,6,5,2,1,7,3,9,1,3,0,4, %U A021027 3,4,7,8,2,6,0,8,6,9,5,6,5,2,1,7,3,9,1,3,0,4,3,4,7,8,2,6,0,8,6 %N A021027 Decimal expansion of 1/23. %C A021027 Since 23 is prime and the cycle of its reciprocal's base 10 digits is 22, 23 is a full reptend prime in base 10 (A001913). - _Alonso del Arte_, Mar 26 2020 %H A021027 <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1). %e A021027 1/23 = 0.043478260869565217391304347826... %t A021027 Join[{0}, RealDigits[1/23, 10, 100][[1]]] (* _Alonso del Arte_, Mar 14 2020 *) %o A021027 (Scala) def longDivRecip(n: Int, places: Int = 100): List[Int] = { %o A021027 val pow10 = Math.pow(10, Math.ceil(Math.log10(Math.abs(n)))).toInt %o A021027 val digits = new scala.collection.mutable.ListBuffer[Int]() %o A021027 var quotient = pow10; var remainder = 0 %o A021027 while (digits.size < places) { %o A021027 remainder = quotient % n; quotient /= n; digits += quotient %o A021027 quotient = remainder * 10 %o A021027 } %o A021027 digits.toList %o A021027 } %o A021027 0 :: longDivRecip(23) // _Alonso del Arte_, Mar 25 2020 %Y A021027 Cf. A001913. %K A021027 nonn,cons,easy %O A021027 0,2 %A A021027 _N. J. A. Sloane_