cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A021028 Decimal expansion of 1/24.

This page as a plain text file.
%I A021028 #33 Aug 06 2024 14:52:02
%S A021028 0,4,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
%T A021028 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
%U A021028 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6
%N A021028 Decimal expansion of 1/24.
%C A021028 Divided by 10, this is zeta(-7), where zeta is the Riemann zeta function. - _Alonso del Arte_, Jan 13 2012
%D A021028 L. B. W. Jolley, Summation of series, Dover Publications Inc. (New York), 1961, p. 40 (series n. 210).
%H A021028 <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (1).
%F A021028 Equals 1/(1*4*7) + 1/(4*7*10) + 1/(7*10*13) + 1/(10*13*16) + ... = Sum_{i>=0} 1/((3i+1)*(3i+4)*(3i+7)). - _Bruno Berselli_, Mar 21 2014
%F A021028 Equals Sum_{k >= 1} k^13/(e^(2*k*Pi) - 1) (by Ramanujan). - _Paolo Xausa_, Jul 15 2024
%F A021028 From _Stefano Spezia_, Aug 06 2024: (Start)
%F A021028 G.f.: x*(4 - 3*x + 5*x^2)/(1 - x).
%F A021028 E.g.f.: 6*(exp(x) - 1) - 2*x - 5*x^2/2. (End)
%t A021028 RealDigits[1/24, 10, 100, -1][[1]] (* _Alonso del Arte_, Jan 13 2012 *)
%Y A021028 Cf. A016777 (numbers of the form 3n+1).
%K A021028 nonn,cons,easy
%O A021028 0,2
%A A021028 _N. J. A. Sloane_