cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A021030 Decimal expansion of 1/26.

This page as a plain text file.
%I A021030 #27 Dec 14 2024 18:26:36
%S A021030 0,3,8,4,6,1,5,3,8,4,6,1,5,3,8,4,6,1,5,3,8,4,6,1,5,3,8,4,6,1,5,3,8,4,
%T A021030 6,1,5,3,8,4,6,1,5,3,8,4,6,1,5,3,8,4,6,1,5,3,8,4,6,1,5,3,8,4,6,1,5,3,
%U A021030 8,4,6,1,5,3,8,4,6,1,5,3,8,4,6,1,5,3,8,4,6,1,5,3,8,4,6,1,5,3,8
%N A021030 Decimal expansion of 1/26.
%C A021030 A tool code breakers sometimes use is the index of coincidence, I_c. According to Swenson (2008), the theoretically perfect I_c is if all characters occur exactly the same number of times, so that none is more likely than any other to be repeated. For ciphertext encrypted from English text (using an alphabet of 26 letters) of infinite length, this has the limit (n - 1)/(26n - 1), which by L'Hopital's rule is 1/26. - _Alonso del Arte_, Sep 13 2011
%C A021030 Also continued fraction expansion of (sqrt(5317635) - 2067)/746.  - _Bruno Berselli_, Sep 13 2011
%D A021030 Christopher Swenson, Modern Cryptanalysis: Techniques for Advanced Code Breaking. Indianopolis, Indiana: Wiley Publishing Inc. (2008): 12 - 15
%H A021030 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,-1,1).
%F A021030 Contribution by _Bruno Berselli_, Sep 13 2011: (Start)
%F A021030   G.f.: x*(3+5*x-4*x^2+5*x^3)/((1-x)*(1+x)*(1-x+x^2)).
%F A021030   a(n) = a(n-1) - a(n-3) + a(n-4) for n > 4.
%F A021030   a(n) = (1/30)*(-11*(n mod 6)+34*((n+1) mod 6) - ((n+2) mod 6) + 29*((n+3) mod 6) - 16*((n+4) mod 6) + 19*((n+5) mod 6)) for n > 0. (End)
%e A021030 0.03846153846153846153846153846...
%t A021030 Join[{0}, RealDigits[1/26, 10, 120][[1]]] (* or *) PadRight[{0}, 120, {5, 3, 8, 4, 6, 1}] (* _Harvey P. Dale_, Dec 19 2012 *)
%K A021030 nonn,cons,easy
%O A021030 0,2
%A A021030 _N. J. A. Sloane_