This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A021319 #23 Sep 05 2025 01:03:08 %S A021319 0,0,3,1,7,4,6,0,3,1,7,4,6,0,3,1,7,4,6,0,3,1,7,4,6,0,3,1,7,4,6,0,3,1, %T A021319 7,4,6,0,3,1,7,4,6,0,3,1,7,4,6,0,3,1,7,4,6,0,3,1,7,4,6,0,3,1,7,4,6,0, %U A021319 3,1,7,4,6,0,3,1,7,4,6,0,3,1,7,4,6,0,3,1,7,4,6,0,3,1,7,4,6,0,3 %N A021319 Decimal expansion of 1/315. %C A021319 If the initial 0 is ignored, a(n) is periodic with period 6: [0, 3, 1, 7, 4, 6]. - _Wesley Ivan Hurt_, Oct 10 2014 %H A021319 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,-1,1). %F A021319 a(n) = a(n-1)-a(n-3)+a(n-4) for n>0, with a(0)=0; a(n) = A068028(n+1)-1 for n>0; a(n+1) = A020806(n)-1. - _Wesley Ivan Hurt_, Oct 10 2014 %F A021319 G.f.: x^2*(-6*x^2 + 2*x - 3)/(x^4 - x^3 + x - 1). - _Chai Wah Wu_, Sep 04 2025 %e A021319 1/315 = 0.0031746031746031746031746031... %p A021319 Digits:=100: evalf(1/315); # _Wesley Ivan Hurt_, Oct 10 2014 %t A021319 RealDigits[1/315, 10, 100, -1][[1]] (* _Wesley Ivan Hurt_, Oct 10 2014 *) %t A021319 Join[{0},LinearRecurrence[{1, 0, -1, 1},{0, 3, 1, 7},98]] (* _Ray Chandler_, Aug 26 2015 *) %Y A021319 Cf. A020806, A068028. %K A021319 nonn,cons,easy,changed %O A021319 0,3 %A A021319 _N. J. A. Sloane_