cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022010 Initial members of prime septuplets (p, p+2, p+8, p+12, p+14, p+18, p+20).

This page as a plain text file.
%I A022010 #56 Nov 04 2023 11:31:51
%S A022010 5639,88799,284729,626609,855719,1146779,6560999,7540439,8573429,
%T A022010 17843459,19089599,24001709,42981929,43534019,69156539,74266259,
%U A022010 79208399,80427029,84104549,87988709,124066079,128469149,144214319,157131419,208729049,218033729
%N A022010 Initial members of prime septuplets (p, p+2, p+8, p+12, p+14, p+18, p+20).
%C A022010 All terms are congruent to 179 (modulo 210). - _Matt C. Anderson_, May 26 2015
%H A022010 Dana Jacobsen, <a href="/A022010/b022010.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from Matt C. Anderson)
%H A022010 Tony Forbes and Norman Luhn, <a href="https://pzktupel.de/ktpatt_hl.php">Patterns of prime k-tuplets & the Hardy-Littlewood constants</a>.
%H A022010 Norman Luhn, <a href="https://pzktupel.de/SMArchiv/07tup2.zip">1 million terms</a> (zipped archive).
%H A022010 Hugo Pfoertner, <a href="/A022010/a022010.pdf">Illustration of n/Integral_{x=2,a(n)} 1/log(x)^7 dx</a> approaching Hardy-Littlewood bound. (2020).
%F A022010 a(n) = 210*A357889(n) + 179. - _Hugo Pfoertner_, Nov 18 2022
%e A022010 a(100) = 2526962939, a(1000) = 80752495919, a(10000) = 2010407120789, a(100000) = 42609827234069, a(1000000) = 822249634821059. See illustration for asymptotic behavior. - _Hugo Pfoertner_, Jun 15 2020
%t A022010 Select[Prime[Range[2 10^8]], Union[PrimeQ[# + {2, 8, 12, 14, 18, 20}]] == {True} &] (* _Vincenzo Librandi_, Oct 01 2015 *)
%t A022010 Select[Partition[Prime[Range[12021000]],7,1],Differences[#]=={2,6,4,2,4,2}&][[All,1]] (* or *) Select[Range[179,219*10^6,210], AllTrue[ #+{0,2,8,12,14,18,20},PrimeQ]&] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Jun 04 2019 *)
%o A022010 (Perl) use ntheory ":all"; say for sieve_prime_cluster(1,1e9, 2,8,12,14,18,20); # _Dana Jacobsen_, Sep 30 2015
%o A022010 (Magma) [p: p in PrimesUpTo(3*10^8) | forall{p+r: r in [2, 8, 12, 14, 18, 20] | IsPrime(p+r)}]; // _Vincenzo Librandi_, Oct 01 2015
%o A022010 (PARI) forprime(p=2, 10^30, if (isprime(p+2) && isprime(p+8) && isprime(p+12) && isprime(p+14) && isprime(p+18) && isprime(p+20), print1(p", "))) \\ _Altug Alkan_, Oct 01 2015. [This can be made 2x faster by inserting "p%210==179 &&" before or after "if(". - _M. F. Hasler_, Aug 04 2021]
%Y A022010 Cf. A022009 (prime septuplets of the first type), A332493.
%Y A022010 Cf. A257124 (union of this and A022009), A343637 (septuplet following 10^n).
%Y A022010 Cf. A357889.
%K A022010 nonn
%O A022010 1,1
%A A022010 _Warut Roonguthai_
%E A022010 More terms from a Maple program by _Matt C. Anderson_, Dec 05 2013