cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022018 Define the sequence UD(a(0),a(1)) by a(n) is the least integer such that a(n)/a(n-1) > a(n-1)/a(n-2)+1 for even n >= 2 and such that a(n)/a(n-1) > a(n-1)/a(n-2) for odd n>=2. This is UD(2,16).

This page as a plain text file.
%I A022018 #59 Jul 13 2023 09:45:43
%S A022018 2,16,129,1040,8385,67604,545057,4394520,35430801,285660700,
%T A022018 2303138321,18569044064,149712848033,1207059275044,9731910872129,
%U A022018 78463494859944,632611632651505,5100428912583468,41122188953879473,331547494013013232,2673100425407651457
%N A022018 Define the sequence UD(a(0),a(1)) by a(n) is the least integer such that a(n)/a(n-1) > a(n-1)/a(n-2)+1 for even n >= 2 and such that a(n)/a(n-1) > a(n-1)/a(n-2) for odd n>=2. This is UD(2,16).
%C A022018 The definition uses a recurrence of Shallit's S(a0,a1) sequences if n is even and Pisot T(a0,a1) sequences if n is odd. The UD notation reflects that we are rounding up or down depending on the position in the sequence. - _David Boyd_, Feb 12 2016
%H A022018 Colin Barker, <a href="/A022018/b022018.txt">Table of n, a(n) for n = 0..1000</a>
%H A022018 D. W. Boyd, <a href="https://www.researchgate.net/publication/258834801">Linear recurrence relations for some generalized Pisot sequences</a>, Adv. Numb. Theory, Oxford Univ. Press (1991) 333-340
%H A022018 D. W. Boyd, <a href="https://www.researchgate.net/profile/David_Boyd7/publication/262181133">Linear recurrence relations for some generalized Pisot sequences</a>, (1996)
%H A022018 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (8,1,-4).
%H A022018 <a href="/index/Ph#Pisot">Index entries for Pisot sequences</a>
%F A022018 Empirical g.f: (2-x^2)/(1-8*x-x^2+4*x^3), holds at least up to n<=50000. - _Robert Israel_, Feb 10 2016
%F A022018 The empirical g.f. found by _Robert Israel_ has been proved. One needs only the definition and the first 6 terms of the sequence. The denominator of the g.f. is the reciprocal of a Pisot polynomial with 2nd largest root real and negative. - _David Boyd_, Mar 06 2016
%F A022018 a(n) = 8*a(n-1)+a(n-2)-4*a(n-3) for n>2. - _Colin Barker_, Aug 09 2016
%p A022018 UD := proc(a0,a1,n)
%p A022018     option remember;
%p A022018     if n = 0 then
%p A022018         a0 ;
%p A022018     elif n = 1 then
%p A022018         a1;
%p A022018     elif type(n,'even') then
%p A022018         floor( procname(a0,a1,n-1)^2/procname(a0,a1,n-2)+1) ;
%p A022018     else
%p A022018         floor( procname(a0,a1,n-1)^2/procname(a0,a1,n-2)) ;
%p A022018     end if;
%p A022018 end proc:
%p A022018 A022018 := proc(n)
%p A022018     UD(2,16,n) ;
%p A022018 end proc: # _R. J. Mathar_, Feb 12 2016
%t A022018 LinearRecurrence[{8, 1, -4}, {2, 16, 129}, 30] (* _Jean-François Alcover_, Dec 12 2016 *)
%o A022018 (PARI) a=[2,16,129]; c=Colrev([8,1,-4]); for(n=2,20,a=concat(a,a[-3..-1]*c));a \\ Reproduces the data. - _M. F. Hasler_, Feb 10 2016
%o A022018 (Magma) Iv:=[2,16]; [n le 2 select Iv[n] else Floor(Self(n-1)^2/Self(n-2))+(1-(-1)^n)/2: n in [1..20]]; // _Bruno Berselli_, Feb 11 2016
%K A022018 nonn,easy
%O A022018 0,1
%A A022018 _R. K. Guy_
%E A022018 Definition clarified based on consultance with _David Boyd_ by _Robert Israel_, Feb 12 2016