This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A022021 #24 Feb 16 2016 08:53:01 %S A022021 5,20,81,329,1337,5434,22086,89767,364852,1482917,6027219,24497237, %T A022021 99567416,404685244,1644816681,6685249720,27171759829,110437838993, %U A022021 448867366641,1824392026070,7415121953942,30138277741915,122495056843392,497873139253657,2023572780632275 %N A022021 Define the sequence S(a(0),a(1)) by a(n+2) is the least integer such that a(n+2)/a(n+1) > a(n+1)/a(n) for n >= 0. This is S(5,20). %C A022021 This coincides with the linearly recurrent sequence defined by the expansion of (5 - 4*x^2)/(1 - 4*x - x^2 + 3*x^3) only up to n <= 39. - _Bruno Berselli_, Feb 11 2016 %H A022021 Colin Barker, <a href="/A022021/b022021.txt">Table of n, a(n) for n = 0..1000</a> %F A022021 a(n+1) = floor(a(n)^2/a(n-1))+1 for all n > 0. - _M. F. Hasler_, Feb 10 2016 %p A022021 A022021 := proc(n) %p A022021 option remember; %p A022021 if n <= 1 then %p A022021 op(n+1,[5,20]) ; %p A022021 else %p A022021 a := procname(n-1)^2/procname(n-2) ; %p A022021 if type(a,'integer') then %p A022021 a+1 ; %p A022021 else %p A022021 ceil(a) ; %p A022021 fi; %p A022021 end if; %p A022021 end proc: # _R. J. Mathar_, Feb 10 2016 %o A022021 (PARI) a=[5,20];for(n=2,30,a=concat(a,a[n]^2\a[n-1]+1));a \\ _M. F. Hasler_, Feb 10 2016 %Y A022021 Cf. A022018 - A022025, A022026 - A022032. %K A022021 nonn %O A022021 0,1 %A A022021 _R. K. Guy_ %E A022021 Double-checked and extended to 3 lines of data by _M. F. Hasler_, Feb 10 2016