This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A022091 #33 Apr 16 2025 09:56:36 %S A022091 0,8,8,16,24,40,64,104,168,272,440,712,1152,1864,3016,4880,7896,12776, %T A022091 20672,33448,54120,87568,141688,229256,370944,600200,971144,1571344, %U A022091 2542488,4113832,6656320,10770152,17426472,28196624,45623096,73819720,119442816 %N A022091 Fibonacci sequence beginning 0, 8. %D A022091 A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 15. %H A022091 G. C. Greubel, <a href="/A022091/b022091.txt">Table of n, a(n) for n = 0..1000</a> %H A022091 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a> %H A022091 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (1,1). %F A022091 a(n) = round( (16phi-8)/5 phi^n) (works for n>4). - _Thomas Baruchel_, Sep 08 2004 %F A022091 a(n) = 8*F(n) = F(n+4) + F(n) + F(n-4) for n>3, where F=A000045. %F A022091 G.f.: 8*x/(1-x-x^2). - _Philippe Deléham_, Nov 20 2008 %t A022091 8*Fibonacci[Range[0,41]] (* _Vladimir Joseph Stephan Orlovsky_, Sep 17 2008; modified by _G. C. Greubel_, Apr 13 2025 *) %t A022091 LinearRecurrence[{1,1},{0,8},40] (* _Harvey P. Dale_, Jan 19 2018 *) %o A022091 (Magma) %o A022091 A022091:= func< n | 8*Fibonacci(n) >; %o A022091 [A022091(n): n in [0..40]]; // _G. C. Greubel_, Apr 13 2025 %o A022091 (SageMath) %o A022091 def A022091(n): return 8*fibonacci(n) %o A022091 print([A022091(n) for n in range(41)]) # _G. C. Greubel_, Apr 13 2025 %Y A022091 Cf. A000032, A000045, A258160. %Y A022091 Sequences of the form m*Fibonacci are listed in A022086. %K A022091 nonn,easy %O A022091 0,2 %A A022091 _N. J. A. Sloane_