This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A022100 #49 Jun 08 2024 00:01:31 %S A022100 1,10,11,21,32,53,85,138,223,361,584,945,1529,2474,4003,6477,10480, %T A022100 16957,27437,44394,71831,116225,188056,304281,492337,796618,1288955, %U A022100 2085573,3374528,5460101,8834629,14294730,23129359,37424089,60553448,97977537,158530985 %N A022100 Fibonacci sequence beginning 1, 10. %C A022100 a(n-1) = Sum_{k=0..ceiling((n-1)/2)} P(10; n-1-k, k), n >= 1, with a(-1)=9. These are the SW-NE diagonals in P(10; n, k), the (10,1) Pascal triangle A093645. Observation by _Paul Barry_, Apr 29 2004. Proof via recursion relations and comparison of inputs. %C A022100 In general, for b Fibonacci sequence beginning with 1, h, we have: %C A022100 b(n) = (2^(-1-n)*((1 - sqrt(5))^n*(1 + sqrt(5) - 2*h) + (1 + sqrt(5))^n*(-1 + sqrt(5) + 2*h)))/sqrt(5). - _Herbert Kociemba_, Dec 18 2011 %H A022100 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a> %H A022100 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (1, 1). %F A022100 a(n) = a(n-1) + a(n-2) for n >= 2, a(0)=1, a(1)=10, a(-1):=9. %F A022100 G.f.: (1 + 9*x)/(1 - x - x^2). %F A022100 a(n) = Sum_{k=0..n} Fibonacci(n-k+1)*(9*binomial(1, k) - 8*binomial(0, k)). - _Paul Barry_, May 05 2005 %F A022100 a(n) = ((1+sqrt(5))^n - (1-sqrt(5))^n)/(2^n*sqrt(5)) + (9/2)*((1+sqrt(5))^(n-1) - (1-sqrt(5))^(n-1))/(2^(n-2)*sqrt(5)). Offset 1. a(3)=11. - Al Hakanson (hawkuu(AT)gmail.com), Jan 14 2009 %F A022100 From _Bruno Berselli_, Feb 20 2017: (Start) %F A022100 a(n) = 9*A000045(n) + A000045(n+1). %F A022100 a(n) = 11*A000045(n) - A000045(n-2). (End) %t A022100 LinearRecurrence[{1,1},{1,10},40] (* _Harvey P. Dale_, May 17 2017 *) %o A022100 (Magma) a0:=1; a1:=10; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..40]]; // _Bruno Berselli_, Feb 12 2013 %Y A022100 Cf. A000045. %Y A022100 a(n) = A109754(9, n+1) = A101220(9, 0, n+1). %K A022100 nonn,easy %O A022100 0,2 %A A022100 _N. J. A. Sloane_