This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A022110 #29 Feb 22 2024 10:42:23 %S A022110 1,20,21,41,62,103,165,268,433,701,1134,1835,2969,4804,7773,12577, %T A022110 20350,32927,53277,86204,139481,225685,365166,590851,956017,1546868, %U A022110 2502885,4049753,6552638,10602391,17155029,27757420,44912449,72669869,117582318,190252187 %N A022110 Fibonacci sequence beginning 1, 20. %C A022110 a(n-1) = Sum(P(20;n-1-k,k),k=0..ceiling((n-1)/2)), n>=1, with a(-1) = 19. These are the SW-NE diagonals in P(20;n,k), the (20,1) Pascal triangle. Cf. A093645 for the (10,1) Pascal triangle. Observation by _Paul Barry_, Apr 29 2004. Proof via recursion relations and comparison of inputs. %H A022110 Paolo Xausa, <a href="/A022110/b022110.txt">Table of n, a(n) for n = 0..1000</a> %H A022110 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a> %H A022110 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (1,1). %F A022110 a(n) = a(n-1)+a(n-2), n >= 2, a(0) = 1, a(1) = 20. %F A022110 G.f.: (1+19*x)/(1-x-x^2). %t A022110 a={};b=1;c=20;AppendTo[a,b];AppendTo[a,c];Do[b=b+c;AppendTo[a,b];c=b+c;AppendTo[a,c],{n,1,12,1}];a (* _Vladimir Joseph Stephan Orlovsky_, Jul 23 2008 *) %t A022110 LinearRecurrence[{1, 1}, {1, 20}, 35] (* _Paolo Xausa_, Feb 22 2024 *) %o A022110 (Magma) a0:=1; a1:=20; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..30]]; // _Bruno Berselli_, Feb 12 2013 %Y A022110 a(n) = A109754(19, n+1) = A101220(19, 0, n+1). %K A022110 nonn,easy %O A022110 0,2 %A A022110 _N. J. A. Sloane_