This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A022173 #41 May 09 2025 10:34:25 %S A022173 1,1,1,1,10,1,1,91,91,1,1,820,7462,820,1,1,7381,605242,605242,7381,1, %T A022173 1,66430,49031983,441826660,49031983,66430,1,1,597871,3971657053, %U A022173 322140667123,322140667123,3971657053,597871,1 %N A022173 Triangle of Gaussian binomial coefficients [ n,k ] for q = 9. %D A022173 F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698. %H A022173 G. C. Greubel, <a href="/A022173/b022173.txt">Rows n=0..50 of triangle, flattened</a> %H A022173 R. Mestrovic, <a href="http://arxiv.org/abs/1409.3820">Lucas' theorem: its generalizations, extensions and applications (1878--2014)</a>, arXiv preprint arXiv:1409.3820 [math.NT], 2014. %H A022173 Kent E. Morrison, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL9/Morrison/morrison37.html">Integer Sequences and Matrices Over Finite Fields</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1. %H A022173 <a href="/index/Ga#Gaussian_binomial_coefficients">Index entries for sequences related to Gaussian binomial coefficients</a> %F A022173 T(n,k) = T(n-1,k-1) + q^k * T(n-1,k). - _Peter A. Lawrence_, Jul 13 2017 %F A022173 G.f. of column k: x^k * exp( Sum_{j>=1} f((k+1)*j)/f(j) * x^j/j ), where f(j) = 9^j - 1. - _Seiichi Manyama_, May 09 2025 %e A022173 Triangle begins: %e A022173 1; %e A022173 1, 1; %e A022173 1, 10, 1; %e A022173 1, 91, 91, 1; %e A022173 1, 820, 7462, 820, 1; %e A022173 1, 7381, 605242, 605242, 7381, 1; %e A022173 1, 66430, 49031983, 441826660, 49031983, 66430, 1; %e A022173 1, 597871, 3971657053, 322140667123, 322140667123, 3971657053, 597871, 1; %p A022173 A027877 := proc(n) %p A022173 mul(9^i-1,i=1..n) ; %p A022173 end proc: %p A022173 A022173 := proc(n,m) %p A022173 A027877(n)/A027877(m)/A027877(n-m) ; %p A022173 end proc: # _R. J. Mathar_, Jul 19 2017 %t A022173 a027878[n_]:=Times@@ Table[9^i - 1, {i, n}]; T[n_, m_]:=a027878[n]/( a027878[m] a027878[n-m]); Table[T[n, m], {n, 0, 10}, {m, 0, n}]//Flatten (* _Indranil Ghosh_, Jul 20 2017, after Maple code *) %t A022173 Table[QBinomial[n,k,9], {n,0,10}, {k,0,n}]//Flatten (* or *) q:= 9; T[n_, 0]:= 1; T[n_,n_]:= 1; T[n_,k_]:= T[n,k] = If[k < 0 || n < k, 0, T[n-1, k -1] +q^k*T[n-1,k]]; Table[T[n,k], {n,0,10}, {k,0,n}] // Flatten (* _G. C. Greubel_, May 27 2018 *) %o A022173 (Python) %o A022173 from operator import mul %o A022173 def a027878(n): return 1 if n==0 else reduce(mul, [9**i - 1 for i in range(1, n + 1)]) %o A022173 def T(n, m): return a027878(n)/(a027878(m)*a027878(n - m)) %o A022173 for n in range(11): print([T(n, m) for m in range(n + 1)]) # _Indranil Ghosh_, Jul 20 2017, after Maple code %o A022173 (PARI) {q=9; T(n,k) = if(k==0,1, if (k==n, 1, if (k<0 || n<k, 0, T(n-1,k-1) + q^k*T(n-1,k))))}; %o A022173 for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ _G. C. Greubel_, May 27 2018 %K A022173 nonn,tabl %O A022173 0,5 %A A022173 _N. J. A. Sloane_