This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A022176 #11 Jun 05 2018 02:42:39 %S A022176 1,1,1,1,13,1,1,157,157,1,1,1885,22765,1885,1,1,22621,3280045,3280045, %T A022176 22621,1,1,271453,472349101,5671197805,472349101,271453,1,1,3257437, %U A022176 68018541997,9800302156141,9800302156141 %N A022176 Triangle of Gaussian binomial coefficients [ n,k ] for q = 12. %D A022176 F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698. %H A022176 G. C. Greubel, <a href="/A022176/b022176.txt">Rows n=0..50 of triangle, flattened</a> %H A022176 Kent E. Morrison, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL9/Morrison/morrison37.html">Integer Sequences and Matrices Over Finite Fields</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1. %F A022176 T(n,k) = T(n-1,k-1) + q^k * T(n-1,k), with q=12. - _G. C. Greubel_, May 29 2018 %t A022176 Table[QBinomial[n,k,12], {n,0,10}, {k,0,n}]//Flatten (* or *) q:= 12; T[n_, 0]:= 1; T[n_,n_]:= 1; T[n_,k_]:= T[n,k] = If[k < 0 || n < k, 0, T[n-1, k -1] +q^k*T[n-1,k]]; Table[T[n,k], {n,0,10}, {k,0,n}] // Flatten (* _G. C. Greubel_, May 28 2018 *) %o A022176 (PARI) {q=12; T(n,k) = if(k==0,1, if (k==n, 1, if (k<0 || n<k, 0, T(n-1,k-1) + q^k*T(n-1,k))))}; %o A022176 for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ _G. C. Greubel_, May 28 2018 %K A022176 nonn,tabl %O A022176 0,5 %A A022176 _N. J. A. Sloane_