cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022179 Triangle of Gaussian binomial coefficients [ n,k ] for q = 15.

This page as a plain text file.
%I A022179 #12 May 13 2019 12:23:51
%S A022179 1,1,1,1,16,1,1,241,241,1,1,3616,54466,3616,1,1,54241,12258466,
%T A022179 12258466,54241,1,1,813616,2758209091,41384581216,2758209091,813616,1,
%U A022179 1,12204241,620597859091,139675719813091,139675719813091
%N A022179 Triangle of Gaussian binomial coefficients [ n,k ] for q = 15.
%D A022179 F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
%H A022179 G. C. Greubel, <a href="/A022179/b022179.txt">Rows n=0..50 of triangle, flattened</a>
%H A022179 Kent E. Morrison, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL9/Morrison/morrison37.html">Integer Sequences and Matrices Over Finite Fields</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
%F A022179 T(n,k) = T(n-1,k-1) + q^k * T(n-1,k), with q=15. - _G. C. Greubel_, May 28 2018
%t A022179 Table[QBinomial[n,k,15], {n,0,10}, {k,0,n}]//Flatten (* or *) q:= 15; T[n_, 0]:= 1; T[n_,n_]:= 1; T[n_,k_]:= T[n,k] = If[k < 0 || n < k, 0, T[n-1, k -1] +q^k*T[n-1,k]]; Table[T[n,k], {n,0,10}, {k,0,n}] // Flatten  (* _G. C. Greubel_, May 28 2018 *)
%o A022179 (PARI) {q=15; T(n,k) = if(k==0,1, if (k==n, 1, if (k<0 || n<k, 0, T(n-1,k-1) + q^k*T(n-1,k))))};
%o A022179 for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ _G. C. Greubel_, May 28 2018
%K A022179 nonn,tabl
%O A022179 0,5
%A A022179 _N. J. A. Sloane_