This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A022184 #13 May 14 2019 12:23:55 %S A022184 1,1,1,1,21,1,1,421,421,1,1,8421,168821,8421,1,1,168421,67536821, %T A022184 67536821,168421,1,1,3368421,27014896821,540362104821,27014896821, %U A022184 3368421,1,1,67368421,10805962096821,4322923853464821 %N A022184 Triangle of Gaussian binomial coefficients [ n,k ] for q = 20. %D A022184 F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698. %H A022184 G. C. Greubel, <a href="/A022184/b022184.txt">Rows n=0..50 of triangle, flattened</a> %H A022184 Kent E. Morrison, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL9/Morrison/morrison37.html">Integer Sequences and Matrices Over Finite Fields</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1. %F A022184 T(n,k) = T(n-1,k-1) + q^k * T(n-1,k), with q=20. - _G. C. Greubel_, May 28 2018 %t A022184 Table[QBinomial[n,k,20], {n,0,10}, {k,0,n}]//Flatten (* or *) q:= 20; T[n_, 0]:= 1; T[n_,n_]:= 1; T[n_,k_]:= T[n,k] = If[k < 0 || n < k, 0, T[n-1, k -1] +q^k*T[n-1,k]]; Table[T[n,k], {n,0,10}, {k,0,n}] // Flatten (* _G. C. Greubel_, May 28 2018 *) %o A022184 (PARI) {q=20; T(n,k) = if(k==0,1, if (k==n, 1, if (k<0 || n<k, 0, T(n-1,k-1) + q^k*T(n-1,k))))}; %o A022184 for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ _G. C. Greubel_, May 28 2018 %Y A022184 Row sums give A015211. %K A022184 nonn,tabl %O A022184 0,5 %A A022184 _N. J. A. Sloane_