This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A022196 #17 Sep 08 2022 08:44:46 %S A022196 1,364,99463,25095280,6174066262,1506472167928,366573514642546, %T A022196 89117945389585840,21658948312410865183,5263390747480701708292, %U A022196 1279025522911365763892449,310804949350361548416923680,75525744222315755534269847164 %N A022196 Gaussian binomial coefficients [ n,5 ] for q = 3. %H A022196 Vincenzo Librandi, <a href="/A022196/b022196.txt">Table of n, a(n) for n = 5..200</a> %F A022196 G.f.: x^5/((1-x)*(1-3*x)*(1-9*x)*(1-27*x)*(1-81*x)*(1-243*x)). - _Vincenzo Librandi_, Aug 07 2016 %F A022196 a(n) = Product_{i=1..5} (3^(n-i+1)-1)/(3^i-1), by definition. - _Vincenzo Librandi_, Aug 06 2016 %t A022196 Table[QBinomial[n, 5, 3], {n, 5, 20}] (* _Vincenzo Librandi_, Aug 07 2016 *) %o A022196 (Sage) [gaussian_binomial(n,5,3) for n in range(5,17)] # _Zerinvary Lajos_, May 25 2009 %o A022196 (Magma) r:=5; q:=3; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // _Vincenzo Librandi_, Aug 07 2016 %o A022196 (PARI) r=5; q=3; for(n=r,30, print1(prod(j=1,r,(1-q^(n-j+1))/(1-q^j)), ", ")) \\ _G. C. Greubel_, May 30 2018 %K A022196 nonn,easy %O A022196 5,2 %A A022196 _N. J. A. Sloane_ %E A022196 Offset changed by _Vincenzo Librandi_, Aug 07 2016