This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A022201 #20 Sep 08 2022 08:44:46 %S A022201 1,88573,5883904390,360801469802830,21571273555248777493, %T A022201 1279025522911365763892449,75628919722004322604209288760, %U A022201 4467854961017673003571751798888920,263862583736385343242102717216527933566 %N A022201 Gaussian binomial coefficients [ n,10 ] for q = 3. %D A022201 F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698. %H A022201 Vincenzo Librandi, <a href="/A022201/b022201.txt">Table of n, a(n) for n = 10..200</a> %F A022201 G:f.: x^10/((1-x)*(1-3*x)*(1-9*x)*(1-27*x)*(1-81*x)*(1-243*x)*(1-729*x)*(1-2187*x)*(1-6561*x)*(1-19683*x)*(1-59049*x)). - _Vincenzo Librandi_, Aug 11 2016 %F A022201 a(n) = Product_{i=1..10} (3^(n-i+1)-1)/(3^i-1), by definition. - _Vincenzo Librandi_, Aug 11 2016 %t A022201 Table[QBinomial[n, 10, 3], {n, 10, 20}] (* _Vincenzo Librandi_, Aug 11 2016 *) %o A022201 (Sage) [gaussian_binomial(n,10,3) for n in range(10,19)] # _Zerinvary Lajos_, May 25 2009 %o A022201 (Magma) r:=10; q:=3; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // _Vincenzo Librandi_, Aug 11 2016 %o A022201 (PARI) r=10; q=3; for(n=r,30, print1(prod(j=1,r,(1-q^(n-j+1))/(1-q^j)), ", ")) \\ _G. C. Greubel_, Jun 01 2018 %K A022201 nonn,easy %O A022201 10,2 %A A022201 _N. J. A. Sloane_ %E A022201 Offset changed by _Vincenzo Librandi_, Aug 11 2016