This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A022220 #22 Jul 02 2023 13:57:45 %S A022220 1,43,1591,57535,2072815,74630671,2686760143,96723701071, %T A022220 3482055254095,125354001240655,4512744117222991,162458788655384143, %U A022220 5848516394205967951,210546590207087679055,7579677247549193442895,272868380912335185925711 %N A022220 Gaussian binomial coefficients [ n,2 ] for q = 6. %H A022220 Vincenzo Librandi, <a href="/A022220/b022220.txt">Table of n, a(n) for n = 2..200</a> %H A022220 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (43, -258, 216). %F A022220 G.f.: x^2/((1-x)*(1-6*x)*(1-36*x)). %F A022220 a(n) = Product_{i=1..2} (6^(n-i+1)-1)/(6^i-1), by definition. - _Vincenzo Librandi_, Aug 16 2016 %t A022220 Table[QBinomial[n, 2, 6], {n, 2, 20}] (* _Vincenzo Librandi_, Aug 10 2016 *) %o A022220 (Sage) [gaussian_binomial(n,2,6) for n in range(2,17)] # _Zerinvary Lajos_, May 28 2009 %o A022220 (Magma) r:=2; q:=6; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // _Vincenzo Librandi_, Aug 10 2016 %o A022220 (PARI) r=2; q=6; for(n=r,30, print1(prod(j=1,r,(1-q^(n-j+1))/(1-q^j)), ", ")) \\ _G. C. Greubel_, Jun 07 2018 %K A022220 nonn,easy %O A022220 2,2 %A A022220 _N. J. A. Sloane_ %E A022220 Offset changed by _Vincenzo Librandi_, Aug 10 2016