cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022242 Gaussian binomial coefficients [ n,2 ] for q = 8.

This page as a plain text file.
%I A022242 #22 Jul 08 2025 09:14:52
%S A022242 1,73,4745,304265,19477641,1246606473,79783113865,5106121684105,
%T A022242 326791806956681,20914675798619273,1338539252338766985,
%U A022242 85666512159498155145,5482656778286418474121,350890033810959074702473
%N A022242 Gaussian binomial coefficients [ n,2 ] for q = 8.
%H A022242 Vincenzo Librandi, <a href="/A022242/b022242.txt">Table of n, a(n) for n = 2..200</a>
%H A022242 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (73, -584, 512).
%F A022242 G.f.: x^2/[(1-x)(1-8x)(1-64x)].
%F A022242 a(n) = Product_{i=1..2} (8^(n-i+1)-1)/(8^i-1), by definition. - _Vincenzo Librandi_, Aug 05 2016
%t A022242 CoefficientList[Series[1/((1-x)(1-8x)(1-64x)), {x,0,25}],x]  (* _Harvey P. Dale_, Mar 13 2011 *)
%t A022242 Table[QBinomial[n, 2, 8], {n, 2, 20}] (* _Vincenzo Librandi_, Aug 05 2016 *)
%o A022242 (Sage) [gaussian_binomial(n,2,8) for n in range(2,16)] # _Zerinvary Lajos_, May 28 2009
%o A022242 (Magma) r:=2; q:=8; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // _Vincenzo Librandi_, Aug 05 2016
%K A022242 nonn
%O A022242 2,2
%A A022242 _N. J. A. Sloane_
%E A022242 Offset changed by _Vincenzo Librandi_, Aug 05 2016