cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022263 Gaussian binomial coefficients [ n,12 ] for q = 9.

This page as a plain text file.
%I A022263 #16 Jul 08 2025 09:16:44
%S A022263 1,317733228541,90858964067210376612667,
%T A022263 25696504083440779881815469635549047,
%U A022263 7258558056330718241144285557911444544132154908,2050065905416034207242060732309202881550943087590159038828,579000252913277034724666671128579290474420179812795955722564434314244
%N A022263 Gaussian binomial coefficients [ n,12 ] for q = 9.
%D A022263 F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
%H A022263 Vincenzo Librandi, <a href="/A022263/b022263.txt">Table of n, a(n) for n = 12..100</a>
%F A022263 a(n) = Product_{i=1..12} (9^(n-i+1)-1)/(9^i-1), by definition. - _Vincenzo Librandi_, Aug 04 2016
%t A022263 Table[QBinomial[n, 12, 9], {n, 12, 30}] (* _Vincenzo Librandi_, Aug 04 2016 *)
%o A022263 (Sage) [gaussian_binomial(n,12,9) for n in range(12,19)] # _Zerinvary Lajos_, May 28 2009
%o A022263 (Magma) r:=12; q:=9; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // _Vincenzo Librandi_, Aug 04 2016
%K A022263 nonn
%O A022263 12,2
%A A022263 _N. J. A. Sloane_
%E A022263 Offset changed by _Vincenzo Librandi_, Aug 04 2016