This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A022290 #70 Mar 28 2024 21:54:12 %S A022290 0,1,2,3,3,4,5,6,5,6,7,8,8,9,10,11,8,9,10,11,11,12,13,14,13,14,15,16, %T A022290 16,17,18,19,13,14,15,16,16,17,18,19,18,19,20,21,21,22,23,24,21,22,23, %U A022290 24,24,25,26,27,26,27,28,29,29,30,31,32,21,22,23,24,24,25,26 %N A022290 Replace 2^k in binary expansion of n with Fibonacci(k+2). %H A022290 Reinhard Zumkeller, <a href="/A022290/b022290.txt">Table of n, a(n) for n = 0..10000</a> %F A022290 G.f.: (1/(1-x)) * Sum_{k>=0} F(k+2)*x^2^k/(1+x^2^k), where F = A000045. %F A022290 a(n) = Sum_{k>=0} A030308(n,k)*A000045(k+2). - _Philippe Deléham_, Oct 15 2011 %F A022290 a(A003714(n)) = n. - _R. J. Mathar_, Jan 31 2015 %F A022290 a(A000225(n)) = A001911(n). - _Philippe Deléham_, Jun 05 2015 %F A022290 From _Jeffrey Shallit_, Jul 17 2018: (Start) %F A022290 Can be computed from the recurrence: %F A022290 a(4*k) = a(k) + a(2*k), %F A022290 a(4*k+1) = a(k) + a(2*k+1), %F A022290 a(4*k+2) = a(k) - a(2*k) + 2*a(2*k+1), %F A022290 a(4*k+3) = a(k) - 2*a(2*k) + 3*a(2*k+1), %F A022290 and the initial terms a(0) = 0, a(1) = 1. (End) %F A022290 a(A003754(n)) = n-1. - _Rémy Sigrist_, Jan 28 2020 %F A022290 From _Rémy Sigrist_, Aug 04 2022: (Start) %F A022290 Empirically: %F A022290 - a(2*A003714(n)) = A022342(n+1), %F A022290 - a(3*A003714(n)) = a(4*A003714(n)) = A026274(n) for n > 0. %F A022290 (End) %e A022290 n=4 = 2^2 is replaced by A000045(2+2) = 3. n=5 = 2^2 + 2^0 is replaced by A000045(2+2) + A000045(0+2) = 3+1 = 4. - _R. J. Mathar_, Jan 31 2015 %e A022290 From _Philippe Deléham_, Jun 05 2015: (Start) %e A022290 This sequence regarded as a triangle with rows of lengths 1, 1, 2, 4, 8, 16, ...: %e A022290 0 %e A022290 1 %e A022290 2, 3 %e A022290 3, 4, 5, 6 %e A022290 5, 6, 7, 8, 8, 9, 10, 11 %e A022290 8, 9, 10, 11, 11, 12, 13, 14, 13, 14, 15, 16, 16, 17, 18, 19 %e A022290 ... %e A022290 (End) %p A022290 A022290 := proc(n) %p A022290 dgs := convert(n,base,2) ; %p A022290 add( op(i,dgs)*A000045(i+1),i=1..nops(dgs)) ; %p A022290 end proc: # _R. J. Mathar_, Jan 31 2015 %p A022290 # second Maple program: %p A022290 b:= (n, i, j)-> `if`(n=0, 0, j*irem(n, 2, 'q')+b(q, j, i+j)): %p A022290 a:= n-> b(n, 1$2): %p A022290 seq(a(n), n=0..127); # _Alois P. Heinz_, Jan 26 2022 %t A022290 Table[Reverse[#].Fibonacci[1 + Range[Length[#]]] &@ IntegerDigits[n, 2], {n, 0, 54}] (* IWABUCHI Yu(u)ki, Aug 01 2012 *) %o A022290 (Haskell) %o A022290 a022290 0 = 0 %o A022290 a022290 n = h n 0 $ drop 2 a000045_list where %o A022290 h 0 y _ = y %o A022290 h x y (f:fs) = h x' (y + f * r) fs where (x',r) = divMod x 2 %o A022290 -- _Reinhard Zumkeller_, Oct 03 2012 %o A022290 (PARI) my(m=Mod('x,'x^2-'x-1)); a(n) = subst(lift(subst(Pol(binary(n)), 'x,m)), 'x,2); \\ _Kevin Ryde_, Sep 22 2020 %o A022290 (Python) %o A022290 def A022290(n): %o A022290 a, b, s = 1,2,0 %o A022290 for i in bin(n)[-1:1:-1]: %o A022290 s += int(i)*a %o A022290 a, b = b, a+b %o A022290 return s # _Chai Wah Wu_, Sep 10 2022 %Y A022290 Other sequences that are built by replacing 2^k in the binary representation with other numbers: A029931 (naturals), A054204 (even-indexed Fibonacci numbers), A062877 (odd-indexed Fibonacci numbers), A059590 (factorials), A089625 (primes). %Y A022290 Cf. A003754, A022342, A026274. %K A022290 nonn,tabf,base %O A022290 0,3 %A A022290 _Marc LeBrun_