cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022292 Exactly half of first a(n) terms of Kolakoski sequence A000002 are 1's (not known to be infinite).

This page as a plain text file.
%I A022292 #29 May 11 2021 09:06:45
%S A022292 0,2,4,6,8,10,14,16,18,20,22,24,26,28,30,36,38,40,42,44,46,48,50,54,
%T A022292 56,58,60,62,64,68,70,72,74,76,78,80,82,86,88,98,104,106,116,118,122,
%U A022292 124,126,128,130,132,136,138,140,142,144,146,148,150,152,158
%N A022292 Exactly half of first a(n) terms of Kolakoski sequence A000002 are 1's (not known to be infinite).
%C A022292 The sequences A022292, A074261, and A342799 partition the nonnegative integers. - _Clark Kimberling_, May 10 2021
%H A022292 Joerg Arndt, <a href="/A022292/b022292.txt">Table of n, a(n) for n = 0..8739</a>
%F A022292 Conjecture: a(n) is asymptotic to c*n*log(n) for some constant c <= 1. - _Benoit Cloitre_, Nov 17 2003
%t A022292 k = Prepend[Nest[Flatten[Partition[#, 2] /. {{2, 2} -> {2, 2, 1, 1}, {2, 1} -> {2, 2, 1}, {1, 2} -> {2, 1, 1}, {1, 1} -> {2, 1}}] &, {2, 2}, 14], 1]; (* A000002 *)
%t A022292 Select[Range[400], Count[Take[k, #], 1] < #/2 &]   (* A074261 *)
%t A022292 Select[Range[400], Count[Take[k, #], 1] == #/2 &]  (* A022292 *)
%t A022292 Select[Range[400], Count[Take[k, #], 1] > #/2 &]   (* A342799 *)
%t A022292 (* _Clark Kimberling_, May 10 2021 *)
%o A022292 (JavaScript)
%o A022292 a=new Array();
%o A022292 a[1]=1; a[2]=2; a[3]=2; cd=1; ap=3;
%o A022292 for (i=4; i<1000; i++)
%o A022292 {
%o A022292     if (a[ap]==1) a[i]=cd;
%o A022292     else {a[i]=cd; a[i+1]=cd; i++}
%o A022292     ap++;
%o A022292     cd=3-cd;
%o A022292 }
%o A022292 oc=0; tc=0;
%o A022292 for (i=1; i<1000; i++)
%o A022292 {
%o A022292     if (oc==tc) document.write(i-1+", ");
%o A022292     if (a[i]==1) oc++;
%o A022292     else tc++;
%o A022292 }
%o A022292 // _Jon Perry_, Sep 11 2012
%Y A022292 Cf. A000002, A074261, A022293, A342799.
%K A022292 nonn
%O A022292 0,2
%A A022292 _Clark Kimberling_
%E A022292 0 prepended by _Jon Perry_, Sep 11 2012