This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A022307 #79 Feb 16 2025 08:32:34 %S A022307 0,0,0,1,1,1,1,1,2,2,2,1,2,1,2,3,3,1,3,2,4,3,2,1,4,2,2,4,4,1,5,2,4,3, %T A022307 2,3,5,3,3,3,6,2,5,1,5,5,3,1,6,3,5,3,4,2,6,4,6,5,3,2,8,2,3,5,6,3,5,3, %U A022307 5,5,7,2,8,2,4,5,5,4,6,2,9,7,3,1,9,4,3,4,9,2,10,4,6,4,2,6,9,4,5,6 %N A022307 Number of distinct prime factors of n-th Fibonacci number. %C A022307 Although every prime divides some Fibonacci number, this is not true for the Lucas numbers. Exactly 1/3 of all primes do not divide any Lucas number. See Lagarias and Moree for more details. - _Jonathan Vos Post_, Dec 06 2006 %C A022307 First occurrence of k: 0, 3, 8, 15, 20, 30, 40, 70, 60, 80, 90, 140, 176, 120, 168, 180, 324, 252, 240, 378, ..., . - _Robert G. Wilson v_, Dec 10 2006 [Other than 0, this is sequence A060320. - _Jon E. Schoenfield_, Dec 30 2016] %C A022307 Row lengths of table A060442. - _Reinhard Zumkeller_, Aug 30 2014 %C A022307 If k properly divides n then a(n) >= a(k) + 1, except for a(6) = a(3) = 1. - _Robert Israel_, Aug 18 2015 %D A022307 Alfred Brousseau, Fibonacci and Related Number Theoretic Tables, The Fibonacci Association, 1972, pages 1-8. %H A022307 Max Alekseyev, <a href="/A022307/b022307.txt">Table of n, a(n) for n = 0..1422</a> (terms 0..1000 and 1001..1408 from T. D. Noe and Amiram Eldar, respectively). %H A022307 Blair Kelly, <a href="http://mersennus.net/fibonacci//">Fibonacci and Lucas Factorizations</a> %H A022307 J. C. Lagarias, <a href="http://projecteuclid.org/euclid.pjm/1102706452">The set of primes dividing the Lucas numbers has density 2/3</a>, Pacific J. Math., 118. No. 2, (1985), 449-461. %H A022307 J. C. Lagarias, <a href="http://projecteuclid.org/euclid.pjm/1102622818">Errata to: The set of primes dividing the Lucas numbers has density 2/3</a>, Pacific J. Math., 162, No. 2, (1994), 393-396. %H A022307 Hisanori Mishima, WIFC (World Integer Factorization Center), <a href="http://www.asahi-net.or.jp/~kc2h-msm/mathland/matha1/matha108.htm">Fibonacci numbers (n = 1 to 100</a>, <a href="http://www.asahi-net.or.jp/~kc2h-msm/mathland/matha1/matha109.htm">n = 101 to 200</a>, <a href="http://www.asahi-net.or.jp/~kc2h-msm/mathland/matha1/matha110.htm">n = 201 to 300</a>, <a href="http://www.asahi-net.or.jp/~kc2h-msm/mathland/matha1/matha111.htm">n = 301 to 400</a>, <a href="http://www.asahi-net.or.jp/~kc2h-msm/mathland/matha1/matha112.htm">n = 401 to 480)</a>. %H A022307 Pieter Moree, <a href="http://dx.doi.org/10.2140/pjm.1998.186.267">Counting Divisors of Lucas Numbers</a>, Pacific J. Math, Vol. 186, No. 2, 1998, pp. 267-284. %H A022307 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/FibonacciNumber.html">Fibonacci Number</a> %F A022307 a(n) = Sum{d|n} A086597(d), Mobius transform of A086597. %F A022307 a(n) = A001221(A000045(n)) = omega(F(n)). - _Jonathan Vos Post_, Dec 06 2006 %t A022307 Table[Length[FactorInteger[Fibonacci[n]]], {n, 150}] %o A022307 (PARI) a(n)=omega(fibonacci(n)) \\ _Charles R Greathouse IV_, Feb 03 2014 %o A022307 (Haskell) %o A022307 a022307 n = if n == 0 then 0 else a001221 $ a000045 n %o A022307 -- _Reinhard Zumkeller_, Aug 30 2014 %o A022307 (Magma) [0] cat [#PrimeDivisors(Fibonacci(n)): n in [1..100]]; // _Vincenzo Librandi_, Jul 26 2017 %Y A022307 Cf. A038575 (number of prime factors, counting multiplicity), A086597 (number of primitive prime factors). %Y A022307 Cf. A000032, A000040, A000045, A001221, A053028. %Y A022307 Cf. A060442, A086598 (omega(Lucas(n))). %Y A022307 Cf. A060320. - _Jon E. Schoenfield_, Dec 30 2016 %K A022307 nonn %O A022307 0,9 %A A022307 _Clark Kimberling_