cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022322 a(n) = a(n-1) + a(n-2) + 1, with a(0) = 1 and a(1) = 8.

This page as a plain text file.
%I A022322 #13 Aug 25 2017 23:36:03
%S A022322 1,8,10,19,30,50,81,132,214,347,562,910,1473,2384,3858,6243,10102,
%T A022322 16346,26449,42796,69246,112043,181290,293334,474625,767960,1242586,
%U A022322 2010547,3253134,5263682,8516817
%N A022322 a(n) = a(n-1) + a(n-2) + 1, with a(0) = 1 and a(1) = 8.
%H A022322 G. C. Greubel, <a href="/A022322/b022322.txt">Table of n, a(n) for n = 0..1000</a>
%H A022322 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,-1).
%F A022322 From R. J. Mathar, Apr 07 2011: (Start)
%F A022322 G.f.: (1+6*x-6*x^2)/((1-x)*(1-x-x^2)).
%F A022322 a(n) = A022114(n) - 1. (End)
%F A022322 a(n) = 2*F(n+2) + 5*F(n) - 1, where F = A000045. - _G. C. Greubel_, Aug 25 2017
%t A022322 LinearRecurrence[{2,0,-1},{1,8,10},40] (* _Harvey P. Dale_, Oct 14 2012 *)
%o A022322 (PARI) x='x+O('x^50); Vec((1+6*x-6*x^2)/((1-x)*(1-x-x^2))) \\ _G. C. Greubel_, Aug 25 2017
%K A022322 nonn
%O A022322 0,2
%A A022322 _N. J. A. Sloane_