This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A022341 #86 Apr 24 2025 17:23:45 %S A022341 1,5,9,17,21,33,37,41,65,69,73,81,85,129,133,137,145,149,161,165,169, %T A022341 257,261,265,273,277,289,293,297,321,325,329,337,341,513,517,521,529, %U A022341 533,545,549,553,577,581,585,593,597,641,645,649,657,661,673,677,681 %N A022341 a(n) = 4*A003714(n) + 1; the odd Fibbinary numbers. %C A022341 Numbers k such that (k+1) does not divide C(3k, k) - C(2k, k). - _Benoit Cloitre_, May 23 2004 %C A022341 Each term is the unique odd number a(n) = Sum_{i in S} 2^i such that n = Sum_{i in S} F_i, where F_i is the i-th Fibonacci number, A000045(i), and S is a set of nonnegative integers of which no two are adjacent. Note that this corresponds to adding F_0 to the Zeckendorf representation of n, which does not change the number being represented, because F_0 = 0. - _Peter Munn_, Sep 02 2022 %H A022341 Alois P. Heinz, <a href="/A022341/b022341.txt">Table of n, a(n) for n = 0..10000</a> %H A022341 Estelle Basor, Brian Conrey, and Kent E. Morrison, <a href="https://arxiv.org/abs/1703.00990">Knots and ones</a>, arXiv:1703.00990 [math.GT], 2017. See page 2. %H A022341 Linus Lindroos, Andrew Sills, and Hua Wang, <a href="http://home.dimacs.rutgers.edu/~asills/Fibbinary/Fibbinary.pdf">Odd fibbinary numbers and the golden ration</a>, Fib. Q., 52 (2014), 61-65. %H A022341 Linus Lindroos, Andrew Sills, and Hua Wang, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Papers1/52-1/LindroosSillsWang.pdf">Odd fibbinary numbers and the golden ration</a>, Fib. Q., 52 (2014), 61-65. %H A022341 A. J. Macfarlane, <a href="https://arxiv.org/abs/2405.18128">On the fibbinary numbers and the Wythoff array</a>, arXiv:2405.18128 [math.CO], 2024. See page 6. %H A022341 D. M. McKenna, <a href="http://ecajournal.haifa.ac.il/Volume2022/ECA2022_S2A13.pdf">Fibbinary Zippers in a Monoid of Toroidal Hamiltonian Cycles that Generate Hilbert-style Square-filling Curves</a>, Enumerative Combinatorics and Applications, 2:2 #S2R13 (2021). %p A022341 F:= combinat[fibonacci]: %p A022341 b:= proc(n) local j; %p A022341 if n=0 then 0 %p A022341 else for j from 2 while F(j+1)<=n do od; %p A022341 b(n-F(j))+2^(j-2) %p A022341 fi %p A022341 end: %p A022341 a:= n-> 4*b(n)+1: %p A022341 seq(a(n), n=0..70); # _Alois P. Heinz_, May 15 2016 %t A022341 Select[Range[1, 511, 2], BitAnd[#, 2#] == 0 &] (* _Alonso del Arte_, Jun 18 2012 *) %o A022341 (Python) %o A022341 for n in range(1, 700, 2): %o A022341 if n*2 & n == 0: %o A022341 print(n, end=',') %o A022341 (Python) %o A022341 def A022341(n): %o A022341 tlist, s = [1,2], 0 %o A022341 while tlist[-1]+tlist[-2] <= n: tlist.append(tlist[-1]+tlist[-2]) %o A022341 for d in tlist[::-1]: %o A022341 if d <= n: %o A022341 s += 1 %o A022341 n -= d %o A022341 s <<= 1 %o A022341 return (s<<1)|1 # _Chai Wah Wu_, Apr 24 2025 %o A022341 (Scala) (1 to 511 by 2).filter(n => (n & 2 * n) == 0) // _Alonso del Arte_, Apr 12 2020 %o A022341 (C#) %o A022341 public static bool IsOddFibbinaryNum(this int n) => ((n & (n >> 1)) == 0) && (n % 2 == 1) ? true : false; // _Frank Hollstein_, Jul 07 2021 %Y A022341 Cf. A000045, A003714, A000846, A022340. %Y A022341 First column of A356875. %K A022341 nonn,easy %O A022341 0,2 %A A022341 _Marc LeBrun_ %E A022341 More terms from _Benoit Cloitre_, May 23 2004 and _Alonso del Arte_, Jun 18 2012 %E A022341 Name edited by _Peter Munn_, Sep 02 2022