cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022387 Fibonacci sequence beginning 4, 30.

This page as a plain text file.
%I A022387 #37 Sep 08 2022 08:44:46
%S A022387 4,30,34,64,98,162,260,422,682,1104,1786,2890,4676,7566,12242,19808,
%T A022387 32050,51858,83908,135766,219674,355440,575114,930554,1505668,2436222,
%U A022387 3941890,6378112,10320002,16698114,27018116,43716230,70734346,114450576,185184922,299635498,484820420
%N A022387 Fibonacci sequence beginning 4, 30.
%H A022387 Vincenzo Librandi, <a href="/A022387/b022387.txt">Table of n, a(n) for n = 0..1000</a>
%H A022387 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>
%H A022387 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (1, 1).
%F A022387 G.f.: (4+26*x)/(1-x-x^2). - _Philippe Deléham_, Nov 19 2008
%F A022387 a(n) = 4*Fibonacci(n+2) + 22*fibonacci(n) = 4*Fibonacci(n-1) + 30*Fibonacci(n). - _G. C. Greubel_, Mar 02 2018
%p A022387 with(combinat,fibonacci):  seq(4*fibonacci(n+2)+22*fibonacci(n),n=0..35); # _Muniru A Asiru_, Mar 03 2018
%t A022387 LinearRecurrence[{1, 1}, {4, 30}, 30] (* _Harvey P. Dale_, Oct 16 2012 *)
%t A022387 CoefficientList[Series[(4 + 26 * x)/(1 - x - x^2), {x, 0, 30}], x] (* _Vincenzo Librandi_, Oct 17 2012 *)
%t A022387 Table[4 * Fibonacci[n + 2] + 22 * Fibonacci[n], {n, 0, 50}] (* _G. C. Greubel_, Mar 02 2018 *)
%o A022387 (Magma) I:=[4,30]; [n le 2 select I[n] else Self(n-1) + Self(n-2): n in [1..40]]; // _Vincenzo Librandi_, Oct 17 2012
%o A022387 (PARI) for(n=0, 40, print1(4*fibonacci(n+2) + 22*fibonacci(n), ", ")) \\ _G. C. Greubel_, Mar 01 2018
%o A022387 (Magma) [4*Fibonacci(n+2) + 22*Fibonacci(n): n in [0..40]]; // _G. C. Greubel_, Mar 01 2018
%o A022387 (GAP) List([0..40],n->4*Fibonacci(n+2)+22*Fibonacci(n)); # _Muniru A Asiru_, Mar 03 2018
%Y A022387 Equals 2 * A022117.
%K A022387 nonn,easy
%O A022387 0,1
%A A022387 _N. J. A. Sloane_