This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A022390 #25 Sep 08 2022 08:44:46 %S A022390 8,17,25,42,67,109,176,285,461,746,1207,1953,3160,5113,8273,13386, %T A022390 21659,35045,56704,91749,148453,240202,388655,628857,1017512,1646369, %U A022390 2663881,4310250,6974131,11284381,18258512,29542893,47801405,77344298,125145703,202490001,327635704,530125705,857761409,1387887114,2245648523,3633535637,5879184160 %N A022390 Fibonacci sequence beginning 8, 17. %H A022390 G. C. Greubel, <a href="/A022390/b022390.txt">Table of n, a(n) for n = 0..1000</a> %H A022390 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a> %H A022390 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (1, 1). %F A022390 G.f.: (8+9*x)/(1-x-x^2). - _Philippe Deléham_, Nov 20 2008 %F A022390 a(n) = 8*Fibonacci(n+2) + Fibonacci(n). - _Michel Marcus_, Mar 03 2018 %p A022390 with(combinat,fibonacci): seq(8*fibonacci(n+2)+fibonacci(n),n=0..35); # _Muniru A Asiru_, Mar 03 2018 %t A022390 Table[8*Fibonacci[n + 2] + Fibonacci[n], {n, 0, 50}] (* or *) LinearRecurrence[{1,1}, {8,17}, 50] (* _G. C. Greubel_, Mar 02 2018 *) %o A022390 (PARI) for(n=0, 50, print1(8*fibonacci(n+2) + fibonacci(n), ", ")) \\ _G. C. Greubel_, Mar 02 2018 %o A022390 (Magma) [8*Fibonacci(n+2) + Fibonacci(n): n in [0..50]]; // _G. C. Greubel_, Mar 02 2018 %o A022390 (GAP) List([0..35],n->8*Fibonacci(n+2)+Fibonacci(n)); # _Muniru A Asiru_, Mar 03 2018 %Y A022390 Cf. A000032. %K A022390 nonn,easy %O A022390 0,1 %A A022390 _N. J. A. Sloane_ %E A022390 Terms a(36) onward added by _G. C. Greubel_, Mar 02 2018