A022413 Kim-sums: "Kimberling sums" K_n + K_2.
1, 5, 8, 10, 13, 16, 18, 21, 23, 26, 29, 31, 34, 37, 39, 42, 44, 47, 50, 52, 55, 57, 60, 63, 65, 68, 71, 73, 76, 78, 81, 84, 86, 89, 92, 94, 97, 99, 102, 105, 107, 110, 112, 115, 118, 120, 123, 126, 128, 131, 133, 136, 139, 141, 144, 146, 149, 152, 154, 157, 160, 162, 165, 167, 170, 173, 175, 178
Offset: 0
Keywords
References
- J. H. Conway, Posting to Math Fun Mailing List, Dec 02 1996.
- M. LeBrun, Posting to Math-Fun Mailing List Jan 10 1997.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..10000
- Jon Asier Bárcena-Petisco, Luis Martínez, María Merino, Juan Manuel Montoya, and Antonio Vera-López, Fibonacci-like partitions and their associated piecewise-defined permutations, arXiv:2503.19696 [math.CO], 2025. See p. 4.
- J. H. Conway, Allan Wechsler, Marc LeBrun, Dan Hoey, N. J. A. Sloane, On Kimberling Sums and Para-Fibonacci Sequences, Correspondence and Postings to Math-Fun Mailing List, Nov 1996 to Jan 1997
Crossrefs
Programs
-
Mathematica
a[n_] := If[n == 0, 1, Floor[n GoldenRatio] + n + 3]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Oct 15 2023 *)
-
Python
from math import isqrt def A022413(n): return (n+isqrt(5*n**2)>>1)+n+3 if n else 1 # Chai Wah Wu, Aug 29 2022
Formula
a(n) = 1 if n=0, otherwise a(n) = A000201(n)+n+3. - N. J. A. Sloane, Mar 07 2016
Extensions
Edited and extended by N. J. A. Sloane, Mar 07 2016
Comments