A022414 Kim-sums: "Kimberling sums" K_n + K_3.
2, 7, 10, 4, 15, 18, 20, 23, 9, 28, 31, 12, 36, 39, 41, 44, 17, 49, 52, 54, 57, 22, 62, 65, 25, 70, 73, 75, 78, 30, 83, 86, 33, 91, 94, 96, 99, 38, 104, 107, 109, 112, 43, 117, 120, 46, 125, 128, 130, 133, 51, 138, 141, 143, 146, 56, 151, 154, 59, 159, 162, 164, 167
Offset: 0
References
- J. H. Conway, Posting to Math Fun Mailing List, Dec 02 1996.
- M. LeBrun, Posting to Math Fun Mailing List Jan 10 1997.
Links
- J. H. Conway, Allan Wechsler, Marc LeBrun, Dan Hoey, and N. J. A. Sloane, On Kimberling Sums and Para-Fibonacci Sequences, Correspondence and Postings to Math-Fun Mailing List, Nov 1996 to Jan 1997
Crossrefs
Programs
-
Maple
Ki := proc(n,i) option remember; local phi ; phi := (1+sqrt(5))/2 ; if i= 0 then n; elif i=1 then floor((n+1)*phi) ; else procname(n,i-1)+procname(n,i-2) ; end if; end proc: Kisum := proc(n,m) local ks,a,i; ks := [seq( Ki(n,i)+Ki(m,i),i=0..5)] ; for i from 0 to 2 do for a from 0 do if Ki(a,0) = ks[i+1] and Ki(a,1) = ks[i+2] then return a; end if; if Ki(a,0) > ks[i+1] then break; end if; end do: end do: end proc: A022414 := proc(n) if n = 0 then 2; else Kisum(n-1,2) ; end if; end proc: seq(A022414(i),i=0..80) ; # R. J. Mathar, Sep 03 2016
-
Mathematica
Ki[n_, i_] := Ki[n, i] = Which[i == 0, n, i == 1, Floor[(n + 1)* GoldenRatio], True, Ki[n, i - 1] + Ki[n, i - 2]]; Kisum [n_, m_] := Module[{ks, a, i}, ks = Table[Ki[n, i] + Ki[m, i], {i, 0, 5}]; For[i = 0, i <= 2, i++, For[a = 0, True, a++, If[Ki[a, 0] == ks[[i + 1]] && Ki[a, 1] == ks[[i + 2]], Return@a]; If[Ki[a, 0] > ks[[i + 1]], Break[]]]]]; a[n_] := If[n == 0, 2, Kisum[n - 1, 2]]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Oct 15 2023, after R. J. Mathar *)
Comments