This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A022415 #15 Oct 15 2023 12:19:55 %S A022415 3,10,13,15,18,21,23,26,28,31,34,36,39,42,44,47,49,52,55,57,60,62,65, %T A022415 68,70,73,76,78,81,83,86,89,91,94,97,99,102,104,107,110,112,115,117, %U A022415 120,123,125,128,131,133,136,138,141,144,146,149,151,154,157,159,162,165,167,170,172,175,178 %N A022415 Kim-sums: "Kimberling sums" K_n + K_4. %D A022415 Posting to math-fun mailing list Jan 10 1997. %H A022415 J. H. Conway, Allan Wechsler, Marc LeBrun, Dan Hoey, N. J. A. Sloane, <a href="/A269725/a269725.txt">On Kimberling Sums and Para-Fibonacci Sequences</a>, Correspondence and Postings to Math-Fun Mailing List, Nov 1996 to Jan 1997 %p A022415 Ki := proc(n,i) %p A022415 option remember; %p A022415 local phi ; %p A022415 phi := (1+sqrt(5))/2 ; %p A022415 if i= 0 then %p A022415 n; %p A022415 elif i=1 then %p A022415 floor((n+1)*phi) ; %p A022415 else %p A022415 procname(n,i-1)+procname(n,i-2) ; %p A022415 end if; %p A022415 end proc: %p A022415 Kisum := proc(n,m) %p A022415 local ks,a,i; %p A022415 ks := [seq( Ki(n,i)+Ki(m,i),i=0..5)] ; %p A022415 for i from 0 to 2 do %p A022415 for a from 0 do %p A022415 if Ki(a,0) = ks[i+1] and Ki(a,1) = ks[i+2] then %p A022415 return a; %p A022415 end if; %p A022415 if Ki(a,0) > ks[i+1] then %p A022415 break; %p A022415 end if; %p A022415 end do: %p A022415 end do: %p A022415 end proc: %p A022415 A022415 := proc(n) %p A022415 if n = 0 then %p A022415 3; %p A022415 else %p A022415 Kisum(n-1,3) ; %p A022415 end if; %p A022415 end proc: %p A022415 seq(A022415(n),n=0..80) ; # _R. J. Mathar_, Sep 03 2016 %t A022415 Ki[n_, i_] := Ki[n, i] = Which[i == 0, n, i == 1, Floor[(n + 1)* GoldenRatio], True, Ki[n, i - 1] + Ki[n, i - 2]]; %t A022415 Kisum[n_, m_] := Module[{ks, a, i}, ks = Table[Ki[n, i] + Ki[m, i], {i, 0, 5}]; For[i = 0, i <= 2, i++, For[a = 0, True, a++, If[Ki[a, 0] == ks[[i + 1]] && Ki[a, 1] == ks[[i + 2]], Return@a]; If[Ki[a, 0] > ks[[i + 1]], Break[]]]]]; %t A022415 a[n_] := If[n == 0, 3, Kisum[n - 1, 3]]; %t A022415 Table[a[n], {n, 0, 80}] (* _Jean-François Alcover_, Oct 15 2023, after _R. J. Mathar_ *) %Y A022415 The "Kim-sums" K_n + K_i for i = 2 through 12 are given in A022413, A022414, A022415, A022416, ..., A022423. %K A022415 nonn %O A022415 0,1 %A A022415 _Marc LeBrun_