This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A022416 #10 Jun 09 2023 05:09:06 %S A022416 4,13,16,18,21,24,26,29,31,34,37,39,42,45,47,50,52,55,58,60,63,65,68, %T A022416 71,73,76,79,81,84,86,89,92,94,97,100,102,105,107,110,113,115,118,120, %U A022416 123,126,128,131,134,136,139,141,144,147,149,152,154,157,160,162,165,168,170 %N A022416 Kim-sums: "Kimberling sums" K_n + K_5. %D A022416 Posting to math-fun mailing list Jan 10 1997. %p A022416 Ki := proc(n,i) %p A022416 option remember; %p A022416 local phi ; %p A022416 phi := (1+sqrt(5))/2 ; %p A022416 if i= 0 then %p A022416 n; %p A022416 elif i=1 then %p A022416 floor((n+1)*phi) ; %p A022416 else %p A022416 procname(n,i-1)+procname(n,i-2) ; %p A022416 end if; %p A022416 end proc: %p A022416 Kisum := proc(n,m) %p A022416 local ks,a,i; %p A022416 ks := [seq( Ki(n,i)+Ki(m,i),i=0..5)] ; %p A022416 for i from 0 to 2 do %p A022416 for a from 0 do %p A022416 if Ki(a,0) = ks[i+1] and Ki(a,1) = ks[i+2] then %p A022416 return a; %p A022416 end if; %p A022416 if Ki(a,0) > ks[i+1] then %p A022416 break; %p A022416 end if; %p A022416 end do: %p A022416 end do: %p A022416 end proc: %p A022416 A022416 := proc(n) %p A022416 if n = 0 then %p A022416 4; %p A022416 else %p A022416 Kisum(n-1,4) ; %p A022416 end if; %p A022416 end proc: %p A022416 seq(A022416(n),n=0..80) ; # _R. J. Mathar_, Sep 03 2016 %t A022416 Ki[n_, i_] := Ki[n, i] = Which[i == 0, n, i == 1, Floor[(n+1)* GoldenRatio], True, Ki[n, i-1] + Ki[n, i-2]]; %t A022416 Kisum[n_, m_] := Module[{ks,a,i}, ks = Table[Ki[n, i] + Ki[m, i], {i, 0, 5}]; For[i = 0, i <= 2, i++, For[a = 0, True, a++, If[Ki[a, 0] == ks[[i+1]] && Ki[a, 1] == ks[[i+2]], Return[a]]; If[Ki[a, 0] > ks[[i+1]], Break[]]]]]; %t A022416 A022416[n_] := If[n == 0, 4, Kisum[n-1, 4]]; %t A022416 Table[A022416[n], {n, 0, 80}] (* _Jean-François Alcover_, Jun 09 2023, after _R. J. Mathar_ *) %K A022416 nonn %O A022416 0,1 %A A022416 _Marc LeBrun_