cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022423 Kim-sums: "Kimberling sums" K_n + K_12.

This page as a plain text file.
%I A022423 #16 Mar 29 2020 09:32:24
%S A022423 11,31,34,36,39,42,44,47,49,52,55,57,60,63,65,68,70,73,76,78,81,83,86,
%T A022423 89,91,94,97,99,102,104,107,110,112,115,118,120,123,125,128,131,133,
%U A022423 136,138,141,144,146,149,152,154,157,159,162,165,167,170,172,175,178,180
%N A022423 Kim-sums: "Kimberling sums" K_n + K_12.
%D A022423 Posting to math-fun mailing list Jan 10 1997.
%H A022423 J. H. Conway, Allan Wechsler, Marc LeBrun, Dan Hoey, N. J. A. Sloane, <a href="/A269725/a269725.txt">On Kimberling Sums and Para-Fibonacci Sequences</a>, Correspondence and Postings to Math-Fun Mailing List, Nov 1996 to Jan 1997
%p A022423 Ki := proc(n,i)
%p A022423     option remember;
%p A022423     local phi ;
%p A022423     phi := (1+sqrt(5))/2 ;
%p A022423     if i= 0 then
%p A022423         n;
%p A022423     elif i=1 then
%p A022423         floor((n+1)*phi) ;
%p A022423     else
%p A022423         procname(n,i-1)+procname(n,i-2) ;
%p A022423     end if;
%p A022423 end proc:
%p A022423 Kisum := proc(n,m)
%p A022423     local ks,a,i;
%p A022423     ks := [seq( Ki(n,i)+Ki(m,i),i=0..5)] ;
%p A022423     for i from 0 to 2 do
%p A022423         for a from 0 do
%p A022423             if Ki(a,0) = ks[i+1] and Ki(a,1) = ks[i+2] then
%p A022423                 return a;
%p A022423             end if;
%p A022423             if Ki(a,0) > ks[i+1] then
%p A022423                 break;
%p A022423             end if;
%p A022423         end do:
%p A022423     end do:
%p A022423 end proc:
%p A022423 A022423 := proc(n)
%p A022423     if n = 0 then
%p A022423         11;
%p A022423     else
%p A022423         Kisum(n-1,11) ;
%p A022423     end if;
%p A022423 end proc:
%p A022423 seq(A022423(n),n=0..80) ; # _R. J. Mathar_, Sep 03 2016
%t A022423 Ki[n_, i_] := Ki[n, i] = Module[{phi = (1 + Sqrt[5])/2}, If[i == 0, n, If[i == 1, Floor[(n+1)*phi], Ki[n, i-1] + Ki[n, i-2]]]];
%t A022423 Kisum[n_, m_] := Module[{ks, a, i}, ks = Table[Ki[n, i] + Ki[m, i], {i, 0, 5}]; For[i = 0, i <= 2, i++, For[a = 0, True, a++, If[Ki[a, 0] == ks[[i+1]] && Ki[a, 1] == ks[[i+2]], Return[a]]; If[Ki[a, 0] > ks[[i+1]], Break[]]]]];
%t A022423 a[n_] := If[n == 0, 11, Kisum[n-1, 11]];
%t A022423 a /@ Range[0, 58] (* _Jean-François Alcover_, Mar 29 2020, after _R. J. Mathar_ *)
%Y A022423 The "Kim-sums" K_n + K_i for i = 2 through 12 are given in A022413, A022414, A022415, A022416, ..., A022423.
%K A022423 nonn
%O A022423 0,1
%A A022423 _Marc LeBrun_