This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A022424 #42 Jan 05 2025 19:51:34 %S A022424 1,2,7,9,11,14,18,22,25,28,31,33,36,39,41,44,47,50,53,56,59,62,66,69, %T A022424 72,75,78,82,85,88,91,94,97,100,103,106,109,112,115,118,121,124,127, %U A022424 129,132,135,138,141,144,147,150,153,156,159,161,164,167,170 %N A022424 Solution a( ) of the complementary equation a(n) = b(n-1) + b(n-2), where a(0) = 1, a(1) = 2; see Comments. %C A022424 From the Bode-Harborth-Kimberling link: %C A022424 a(n) = b(n-1) + b(n-2) for n > 2; %C A022424 b(0) = least positive integer not in {a(0),a(1)}; %C A022424 b(n) = least positive integer not in {a(0),...,a(n),b(0),...,b(n-1)} for n > 1. %C A022424 Note that (b(n)) is strictly increasing and is the complement of (a(n)). %C A022424 *** %C A022424 In the following guide to solutions a( ) and b( ) of a(n) = b(n-1) + b(n-2), an asterisk (*) indicates that a( ) differs from the indicated A-sequence in one or two initial terms: %C A022424 (a(n)) (b(n)) a(0) a(1) %C A022424 A022424 A055563 1 2 %C A022424 A022425 A299407 1 4 %C A022424 A022441* A055562 1 5 %C A022424 A022426 A299411 2 3 %C A022424 A022442* A099467* 2 4 %C A022424 A299416 A299417 3 4 %C A022424 A299418 A299419 3 5 %C A022424 A299420 A299421 4 5 %C A022424 A022441* A055562 1 1 %C A022424 *** %C A022424 Guide to solutions a( ) and b( ) of a(n) = b(n-1) + b(n-2) + b(n-3) for various initial values: %C A022424 (a(n)) (b(n)) a(0) a(1) a(2) %C A022424 A299486 A299487 1 2 3 %C A022424 A299488 A299489 1 2 4 %C A022424 A299490 A299491 1 3 5 %C A022424 A299492 A299492 2 4 5 %C A022424 A299494 A299493 2 4 6 %C A022424 A299496 A299494 3 4 5 %C A022424 *** %C A022424 Guide to other complementary equations: %C A022424 A022427-A022440: a(n) = b(n-1) + b(n-3) %C A022424 A299531-A299532: a(n) = 2*b(n-1) + b(n-2), a(0) = 1, a(1) = 2 %C A022424 A296220, A299534: a(n) = b(n-1) + 2*b(n-2), a(0) = 1, a(1) = 2 %C A022424 A022437, A299536: a(n) = b(n-1) + b(n-3), a(0) = 1, a(1) = 2, a(2) = 3 %C A022424 A022437, A299538: a(n) = b(n-1) + b(n-3), a(0) = 2, a(1) = 3, a(2) = 4 %C A022424 A022438-A299540: a(n) = b(n-1) + b(n-3), a(0) = 2, a(1) = 3, a(2) = 5 %C A022424 A299541-A299542: a(n) = b(n-1) + b(n-3), a(0) = 2, a(1) = 4, a(2) = 6 %C A022424 A299543-A299544: a(n) = 2*b(n-1) + b(n-2) - b(n-3), a(0) = 1, a(1) = 2, a(2) = 3 %C A022424 A299545-A299546: a(n) = b(n-1) + 2*b(n-2) - b(n-3), a(0) = 1, a(1) = 2, a(2) = 3 %C A022424 A299547: a(n) = b(n-1) + b(n-2) + ... + b(0), a(0) = 1, a(1) = 2, a(2) = 3 %H A022424 Ivan Neretin, <a href="/A022424/b022424.txt">Table of n, a(n) for n = 0..10000</a> %H A022424 J-P. Bode, H. Harborth, C. Kimberling, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Papers1/45-3/bode.pdf">Complementary Fibonacci sequences</a>, Fibonacci Quarterly 45 (2007), 254-264. %t A022424 Fold[Append[#1, Plus @@ Complement[Range[Max@#1 + 3], #1][[{#2, #2 + 1}]]] &, {1, 2}, Range[56]] (* _Ivan Neretin_, Mar 28 2017 *) %Y A022424 Cf. A055563 (complement), A022425, A299407, A299486-A299494. %Y A022424 Another pair is given in A324142, A324143. %K A022424 nonn %O A022424 0,2 %A A022424 _Clark Kimberling_ %E A022424 Edited by _Clark Kimberling_, Feb 16 2018