cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022494 Number of connected regular linearized chord diagrams of degree n.

This page as a plain text file.
%I A022494 #19 Nov 03 2017 03:45:08
%S A022494 1,1,1,2,5,16,63,293,1561,9321,61436,442134,3446077,28905485,
%T A022494 259585900,2485120780,25267283367,271949606805,3089330120711,
%U A022494 36943477086287,463943009361687,6105064699310785,84011389289865102
%N A022494 Number of connected regular linearized chord diagrams of degree n.
%H A022494 Gheorghe Coserea, <a href="/A022494/b022494.txt">Table of n, a(n) for n = 0..202</a>
%H A022494 A. Stoimenow, <a href="http://www.math.toronto.edu/stoimeno/bound.ps.gz">Enumeration of chord diagrams and an upper bound for Vassiliev invariants</a>, J. Knot Theory Ramifications, 7 (1998), no. 1, 93-114. [broken link], <a href="http://dx.doi.org/10.1142/S0218216598000073">[DOI]</a>
%H A022494 Don Zagier, <a href="http://people.mpim-bonn.mpg.de/zagier/">Vassiliev invariants and a strange identity related to the Dedekind eta-function</a>, Topology, vol.40, pp.945-960 (2001); see p.955.
%o A022494 (PARI)
%o A022494 A137251_seq(N) = {
%o A022494   my(x='x + O('x^(N+1)), t='t+O('t^(N+2)), q=1-x, z=1/t-1, p=vector(N+1));
%o A022494   p[1]=1; for (n=1, #p-1, p[n+1] = p[n] * (1-q^n)/(1+z*q^n));
%o A022494   apply(p->Vecrev(p), Vec((apply(p->Pol(p,'t), vecsum(p)/(1+z))-'t)/'t^2));
%o A022494 };
%o A022494 A022494_seq(N) = {
%o A022494   my(s = 't+'t^2*'x*Ser(apply(v->Polrev(v,'t), A137251_seq(N))),
%o A022494      r = Ser(vector(N+1, n, subst(polcoeff(s, n-1, 't), 'x, 'u + O('u^(N+1)))),'t));
%o A022494   Vec(1+subst(Pol(t/serreverse(r) - 1,'t),'t,1));
%o A022494 };
%o A022494 A022494_seq(22) \\ _Gheorghe Coserea_, Nov 01 2017
%Y A022494 Cf. A137251.
%K A022494 nonn
%O A022494 0,4
%A A022494 Alexander Stoimenow (stoimeno(AT)math.toronto.edu)