This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A022522 #45 Feb 16 2025 08:32:34 %S A022522 1,63,665,3367,11529,31031,70993,144495,269297,468559,771561,1214423, %T A022522 1840825,2702727,3861089,5386591,7360353,9874655,13033657,16954119, %U A022522 21766121,27613783,34655985,43067087,53037649,64775151,78504713,94469815,112933017,134176679 %N A022522 Nexus numbers (n+1)^6 - n^6. %D A022522 J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 54. %H A022522 Vincenzo Librandi, <a href="/A022522/b022522.txt">Table of n, a(n) for n = 0..10000</a> %H A022522 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/NexusNumber.html">Nexus Number</a> %H A022522 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1). %F A022522 G.f.: (1+x)*(1+56*x+246*x^2+56*x^3+x^4)/(1-x)^6. - _Colin Barker_, Dec 21 2012 %F A022522 a(n) = A005408(n) * A243201(n). - _Mathew Englander_, Jun 06 2014 %F A022522 a(n) = A001014(n+1) - A001014(n). - _Wesley Ivan Hurt_, Jun 06 2014 %F A022522 E.g.f.: (1 +62*x +270*x^2 +260*x^3 +75*x^4 +6*x^5)*exp(x). - _G. C. Greubel_, Aug 28 2019 %F A022522 G.f.: polylog(-6, x)*(1-x)/x. See the g.f. of _Colin Barker_ (with expanded numerator), and the g.f. of the rows of A008292 by _Vladeta Jovovic_, Sep 02 2002. - _Wolfdieter Lang_, May 10 2021 %p A022522 A022522:=n->(n + 1)^6 - n^6; seq(A022522(n), n=0..30); # _Wesley Ivan Hurt_, Jan 30 2014 %t A022522 Table[(n+1)^6-n^6, {n,0,30}] (* _Vincenzo Librandi_, Nov 22 2011 *) %o A022522 (Magma) [(n+1)^6-n^6: n in [0..30]]; // _Vincenzo Librandi_, Nov 22 2011 %o A022522 (PARI) a(n)=(n+1)^6-n^6 \\ _Charles R Greathouse IV_, Sep 24 2015 %o A022522 (Sage) [(n+1)^6 -n^6 for n in (0..30)] # _G. C. Greubel_, Aug 28 2019 %o A022522 (GAP) List([0..30], n-> (n+1)^6 - n^6); # _G. C. Greubel_, Aug 28 2019 %Y A022522 Column k=5 of array A047969. %Y A022522 Beginning with n=1, a subsequence of A181125 (difference of two positive 6th powers). - _Mathew Englander_, Jun 01 2014 %Y A022522 Cf. A008292, A022521, A022523. %K A022522 nonn,easy %O A022522 0,2 %A A022522 _N. J. A. Sloane_, Jun 14 1998 %E A022522 More terms from _Colin Barker_, Dec 21 2012