A341050 Cube array read by upward antidiagonals ignoring zero and empty terms: T(n, k, r) is the number of n-ary strings of length k, containing r consecutive 0's.
1, 1, 1, 3, 1, 1, 3, 1, 5, 8, 1, 1, 3, 1, 5, 8, 1, 7, 21, 19, 1, 1, 3, 1, 5, 8, 1, 7, 21, 20, 1, 9, 40, 81, 43, 1, 1, 3, 1, 5, 8, 1, 7, 21, 20, 1, 9, 40, 81, 47, 1, 11, 65, 208, 295, 94, 1, 1, 3, 1, 5, 8, 1, 7, 21, 20, 1, 9, 40, 81, 48, 1, 11, 65, 208, 297, 107, 1, 13, 96, 425, 1024, 1037, 201
Offset: 2
Examples
For n = 5, k = 6 and r = 4, there are 65 strings: {000000, 000001, 000002, 000003, 000004, 000010, 000011, 000012, 000013, 000014, 000020, 000021, 000022, 000023, 000024, 000030, 000031, 000032, 000033, 000034, 000040, 000041, 000042, 000043, 000044, 010000, 020000, 030000, 040000, 100000, 100001, 100002, 100003, 100004, 110000, 120000, 130000, 140000, 200000, 200001, 200002, 200003, 200004, 210000, 220000, 230000, 240000, 300000, 300001, 300002, 300003, 300004, 310000, 320000, 330000, 340000, 400000, 400001, 400002, 400003, 400004, 410000, 420000, 430000, 440000} The first seven slices of the tetrahedron (or pyramid) are: -----------------Slice 1----------------- 1 -----------------Slice 2----------------- 1 1 3 -----------------Slice 3----------------- 1 1 3 1 5 8 -----------------Slice 4----------------- 1 1 3 1 5 8 1 7 21 19 -----------------Slice 5----------------- 1 1 3 1 5 8 1 7 21 20 1 9 40 81 43 -----------------Slice 6----------------- 1 1 3 1 5 8 1 7 21 20 1 9 40 81 47 1 11 65 208 295 94 -----------------Slice 7----------------- 1 1 3 1 5 8 1 7 21 20 1 9 40 81 48 1 11 65 208 297 107 1 13 96 425 1024 1037 201
Links
- Robert P. P. McKone, Antidiagonals n = 2..50, flattened
Crossrefs
Cf. A005408, A003215, A005917, A022521, A022522, A022523, A022524, A022525, A022526, A022527, A022528, A022529, A022530, A022531, A022532, A022533, A022534, A022535, A022536, A022537, A022538, A022539, A022540 (k=x, r=1, where x is the x-th Nexus Number).
Cf. A000567 [(k=4, r=2),(k=5, r=3),(k=6, r=4),...,(k=x, r=x-2)].
Cf. A103532 [(k=6, r=3),(k=7, r=4),(k=8, r=5),...,(k=x, r=x-3)].
Programs
-
Mathematica
m[r_, n_] := Normal[With[{p = 1/n}, SparseArray[{Band[{1, 2}] -> p, {i_, 1} /; i <= r -> 1 - p, {r + 1, r + 1} -> 1}]]]; T[n_, k_, r_] := MatrixPower[m[r, n], k][[1, r + 1]]*n^k; DeleteCases[Transpose[PadLeft[Reverse[Table[T[n, k, r], {k, 2, 8}, {r, 2, k}, {n, 2, r}], 2]], 2 <-> 3], 0, 3] // Flatten