cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022541 Related to number of irreducible stick-cutting problems.

This page as a plain text file.
%I A022541 #26 Aug 05 2024 06:24:52
%S A022541 0,0,0,1,1,1,4,7,9,21,41,73,147,288,557,1111,2193,4343,8728,17483,
%T A022541 35063,70828,143267,290193,589705,1200646,2448904,5005001,10245216,
%U A022541 21005238,43134355,88696073,182621943,376496023,777098691,1605731742,3321492918,6877489184
%N A022541 Related to number of irreducible stick-cutting problems.
%C A022541 Number of partitions of n(n+1)/2 with all elements greater than n and less than 2n-1. - _David Bevan_, Sep 19 2011
%H A022541 F. Faase, <a href="http://www.iwriteiam.nl/cutsticks.html">The cutting sticks problem</a>
%H A022541 Mathematics Stack Exchange, <a href="http://math.stackexchange.com/questions/2581/cutting-sticks-puzzle">Cutting sticks puzzle</a>
%F A022541 a(n) = [x^(n*(n+1)/2)] Product_{k=n+1..2*n-2} 1/(1-x^k). - _Sean A. Irvine_, May 18 2019
%e A022541 a(4)=1: 10 can be partitioned as (5,5). - _David Bevan_, Sep 19 2011
%t A022541 Table[Length[IntegerPartitions[n(n+1)/2, All, Range[n+1,2n-2]]], {n, 20}] (* _David Bevan_, Sep 19 2011 *)
%K A022541 nonn
%O A022541 1,7
%A A022541 _Frans J. Faase_
%E A022541 a(4) and a(5) corrected by _David Bevan_, Sep 19 2011
%E A022541 More terms from _Alois P. Heinz_, Sep 20 2012