This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A022545 #37 Sep 08 2022 08:44:46 %S A022545 11,182403491,226449521,910935911,1042090781,1459270271,2843348351, %T A022545 6394117181,6765896981,8247812381,8750853101,11076719651,12850665671, %U A022545 17140322651,22784826131,24816950771,33081664151 %N A022545 Initial members of prime nonuplets (p, p+2, p+6, p+8, p+12, p+18, p+20, p+26, p+30). %C A022545 All terms congruent to 11 (modulo 210). - _Matt C. Anderson_, May 27 2015 %H A022545 Matt C. Anderson and Dana Jacobsen, <a href="/A022545/b022545.txt">Table of n, a(n) for n = 1..10000</a> [first 401 terms from Matt C. Anderson] %H A022545 Tony Forbes and Norman Luhn, <a href="http://www.pzktupel.de/ktuplets">Prime k-tuplets</a> %H A022545 Norman Luhn, <a href="http://www.pzktupel.de/SMArchiv/09tup1.zip">The first 10^6 initial members of prime 9-tuplets | pattern: d= 0, 2, 6, 8, 12, 18, 20, 26, 30</a>, zip archive. %t A022545 Select[Prime[Range[250000000]], Union[PrimeQ[ # +{2, 6, 8, 12, 18, 20, 26, 30}]]=={True} &] (* _Vincenzo Librandi_, May 27 2015 *) %o A022545 (Magma) [p: p in PrimesUpTo(250000000) | forall{p+r: r in [2, 6,8,12,18,20,26,30] | IsPrime(p+r)}]; // _Vincenzo Librandi_, May 27 2015 %o A022545 (Perl) use ntheory ":all"; say for sieve_prime_cluster(1,1e11, 2,6,8,12,18,20,26,30); # _Dana Jacobsen_, Sep 30 2015 %o A022545 (PARI) forprime(p=2, 10^30, if (isprime(p+2) && isprime(p+6) && isprime(p+8) && isprime(p+12) && isprime(p+18) && isprime(p+20) && isprime(p+26) && isprime(p+30), print1(p", "))) \\ _Altug Alkan_, Sep 30 2015 %Y A022545 Cf. A022546, A022547, A022548. %K A022545 nonn %O A022545 1,1 %A A022545 _Warut Roonguthai_ %E A022545 More terms from _Matt C. Anderson_