This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A022546 #42 Sep 08 2022 08:44:46 %S A022546 17,1277,113147,252277007,408936947,521481197,1116452627,1209950867, %T A022546 1645175087,2966003057,3947480417,6234613727,9307040837,9853497737, %U A022546 11878692167,13766391467,21956291867,22741837817,24388061207 %N A022546 Initial members of prime nonuplets (p, p+2, p+6, p+12, p+14, p+20, p+24, p+26, p+30). %C A022546 Subsequence of A022012. - _R. J. Mathar_, Feb 10 2013 %C A022546 All terms congruent to 17 (modulo 30). - _Matt C. Anderson_, May 27 2015 %H A022546 Matt C. Anderson and Dana Jacobsen, <a href="/A022546/b022546.txt">Table of n, a(n) for n = 1..10000</a> [first 200 terms from Matt C. Anderson] %H A022546 Tony Forbes and Norman Luhn, <a href="http://www.pzktupel.de/ktuplets">Prime k-tuplets</a> %H A022546 Norman Luhn, <a href="http://www.pzktupel.de/SMArchiv/09tup3.zip">The first 10^6 initial members of prime 9-tuplets | pattern: d= 0, 2, 6, 12, 14, 20, 24, 26, 30</a>, zip archive. %p A022546 composite_small := proc (n::integer) %p A022546 description "determine if n has a prime factor less than 100"; %p A022546 if igcd(2305567963945518424753102147331756070, n) = 1 then return false else return true; %p A022546 end if ; %p A022546 end proc: %p A022546 p := [0, 2, 6, 12, 14, 20, 24, 26, 30]: %p A022546 # using isprime(m*n+o+p) %p A022546 o := 17: %p A022546 m:=30: %p A022546 loopstop:=10^11: %p A022546 loopstart:=0: %p A022546 for n from loopstart to loopstop do %p A022546 counter := 0: %p A022546 wc := 0; %p A022546 wd := 0; %p A022546 while `and`(wd > -10, wd < 9) do %p A022546 wd := wd+1; %p A022546 if composite_small(m*n+o+p[wd]) = false then wd := wd+1 else wd := -10 end if ; %p A022546 end do; %p A022546 if wd >= 9 then %p A022546 while `and`(counter >= 0, wc < 9) do %p A022546 wc := wc+1; %p A022546 if isprime(m*n+o+p[wc]) then counter := counter+1 else counter := -1 end if; %p A022546 end do end if; %p A022546 if counter = 9 then print(m*n+o) end if; %p A022546 end do: %t A022546 Select[Prime[Range[260000000]], Union[PrimeQ[ # +{2, 6, 12, 14, 20, 24, 26, 30}]]=={True} &] (* _Vincenzo Librandi_, May 27 2015 *) %o A022546 (Magma) [p: p in PrimesUpTo(260000000) | forall{p+r: r in [2, 6, 12,14,20,24,26,30] | IsPrime(p+r)}]; // _Vincenzo Librandi_, May 27 2015 %o A022546 (Perl) use ntheory ":all"; say for sieve_prime_cluster(1,1e11, 2,6,12,14,20,24,26,30); # _Dana Jacobsen_, Sep 30 2015 %o A022546 (PARI) forprime(p=2, 1e30, if (isprime(p+2) && isprime(p+6) && isprime(p+12) && isprime(p+14) && isprime(p+20) && isprime(p+24) && isprime(p+26) && isprime(p+30) , print1(p", "))) \\ _Altug Alkan_, Sep 30 2015 %Y A022546 Cf. A022545, A022547, A022548. %K A022546 nonn %O A022546 1,1 %A A022546 _Warut Roonguthai_