This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A022548 #33 Oct 24 2021 08:41:44 %S A022548 88789,855709,74266249,964669609,1422475909,2117861719,2558211559, %T A022548 2873599429,5766036949,6568530949,8076004609,9853497739,16394542249, %U A022548 21171795079,21956291869,22741837819,26486447149,27254489389 %N A022548 Initial members of prime nonuplets (p, p+4, p+10, p+12, p+18, p+22, p+24, p+28, p+30). %C A022548 All terms are congruent to 169 (modulo 210). - _Matt C. Anderson_, May 28 2015 %H A022548 Matt C. Anderson and Dana Jacobsen, <a href="/A022548/b022548.txt">Table of n, a(n) for n = 1..10000</a> [first 800 terms from Matt C. Anderson] %H A022548 Tony Forbes and Norman Luhn, <a href="http://www.pzktupel.de/ktuplets">Prime k-tuplets</a> %H A022548 Norman Luhn, <a href="http://www.pzktupel.de/SMArchiv/09tup4.zip">The first 10^6 initial members of prime 9-tuplets | pattern: d= 0, 4, 10, 12, 18, 22, 24, 28, 30</a>, zip archive. %p A022548 a := 1; for b to 25 do a := a*ithprime(b) end do; a; %p A022548 # so ‘a’ is the product of the primes 2 through 97 %p A022548 composite_small := proc (n::integer) %p A022548 description "determine if n has a prime factor less than 100"; %p A022548 if igcd(2305567963945518424753102147331756070, n) = 1 then return false else return true end if %p A022548 end proc; %p A022548 # my technique involves isprime(m*n+o+p) %p A022548 # with Multiplier, Number, Offset, and Pattern %p A022548 p := [0, 4, 10, 12, 18, 22, 24, 28, 30]; %p A022548 o := [2059, 6679, 7519, 8989, 10249, 12139, 14449, 14869, 15919, 17179, 20539, 21379, 24109, 25999, 28729]; %p A022548 with(ArrayTools); %p A022548 os := Size(o, 2); %p A022548 ps := Size(p, 2); %p A022548 m := 30030; %p A022548 loopstop := 10^11; %p A022548 loopstart := 0; %p A022548 for n from loopstart to loopstop do %p A022548 for a to os do %p A022548 counter := 0; wc := 0; wd := 0; %p A022548 while `and`(wd > -10, wd < ps) do %p A022548 wd := wd+1; %p A022548 if composite_small(m*n+o[a]+p[wd]) = false then wd := wd+1 else wd := -10 end if; %p A022548 end do; %p A022548 if wd >= 9 then %p A022548 while `and`(counter >= 0, wc < ps) do %p A022548 wc := wc+1; %p A022548 if isprime(m*n+o[a]+p[wc]) then counter := counter+1 else counter := -1 end if; %p A022548 end do; %p A022548 end if; %p A022548 if counter = ps then print(m*n+o[a]) end if; %p A022548 end do; %p A022548 end do; %p A022548 # _Matt C. Anderson_, Feb 13 2014 %t A022548 Select[Prime[Range[2 10^6]], Union[PrimeQ[# + {4, 10, 12, 18, 22, 24, 28, 30}]] == {True} &] (* _Vincenzo Librandi_, Sep 30 2015 *) %o A022548 (Perl) use ntheory ":all"; say for sieve_prime_cluster(1,1e11, 4,10,12,18,22,24,28,30); # _Dana Jacobsen_, Sep 30 2015 %o A022548 (PARI) forprime(p=2, 10^30, if (isprime(p+4) && isprime(p+10) && isprime(p+12) && isprime(p+18) && isprime(p+22) && isprime(p+24) && isprime(p+28) && isprime(p+30), print1(p", "))) \\ _Altug Alkan_, Sep 30 2015 %Y A022548 Cf. A022545, A022546, A022547. %K A022548 nonn %O A022548 1,1 %A A022548 _Warut Roonguthai_