cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022549 Sum of a square and a nonnegative cube.

This page as a plain text file.
%I A022549 #19 Jul 08 2025 09:17:01
%S A022549 0,1,2,4,5,8,9,10,12,16,17,24,25,26,27,28,31,33,36,37,43,44,49,50,52,
%T A022549 57,63,64,65,68,72,73,76,80,81,82,89,91,100,101,108,113,121,122,125,
%U A022549 126,127,128,129,134,141,144,145
%N A022549 Sum of a square and a nonnegative cube.
%C A022549 It appears that there are no modular constraints on this sequence; i.e., every residue class of every integer has representatives here. - _Franklin T. Adams-Watters_, Dec 03 2009
%C A022549 A045634(a(n)) > 0. - _Reinhard Zumkeller_, Jul 17 2010
%H A022549 R. Zumkeller, <a href="/A022549/b022549.txt">Table of n, a(n) for n = 1..10000</a> - _Reinhard Zumkeller_, Jul 17 2010
%t A022549 q=30; imax=q^2; Select[Union[Flatten[Table[x^2+y^3, {y,0,q^(2/3)}, {x,0,q}]]], #<=imax&] (* _Vladimir Joseph Stephan Orlovsky_, Apr 20 2011 *)
%o A022549 (PARI) is(n)=for(k=0,sqrtnint(n,3), if(issquare(n-k^3), return(1))); 0 \\ _Charles R Greathouse IV_, Aug 24 2020
%o A022549 (PARI) list(lim)=my(v=List(),t); for(k=0,sqrtnint(lim\=1,3), t=k^3; for(n=0,sqrtint(lim-t), listput(v,t+n^2))); Set(v) \\ _Charles R Greathouse IV_, Aug 24 2020
%Y A022549 Complement of A022550; A002760 and A179509 are subsequences.
%Y A022549 Cf. A055394, A045634, A055393, A123291, A169618, A123364, A111925.
%K A022549 nonn,easy
%O A022549 1,3
%A A022549 _N. J. A. Sloane_