This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A022575 #22 Sep 08 2022 08:44:46 %S A022575 1,10,55,230,815,2562,7360,19700,49755,119700,276278,615130,1326965, %T A022575 2783360,5693305,11384326,22299655,42865280,80983060,150571340, %U A022575 275840009,498410280,889056835,1566896280,2730474975,4707724814,8035618655,13586253440,22765030080,37820087380 %N A022575 Expansion of Product_{m>=1} (1+x^m)^10. %H A022575 Seiichi Manyama, <a href="/A022575/b022575.txt">Table of n, a(n) for n = 0..1000</a> %F A022575 a(n) ~ (5/6)^(1/4) * exp(Pi * sqrt(10*n/3)) / (64 * n^(3/4)). - _Vaclav Kotesovec_, Mar 05 2015 %F A022575 a(0) = 1, a(n) = (10/n)*Sum_{k=1..n} A000593(k)*a(n-k) for n > 0. - _Seiichi Manyama_, Apr 03 2017 %t A022575 nmax=50; CoefficientList[Series[Product[(1+q^m)^10,{m,1,nmax}],{q,0,nmax}],q] (* _Vaclav Kotesovec_, Mar 05 2015 *) %o A022575 (PARI) m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+q^n)^10)) \\ _G. C. Greubel_, Feb 26 2018 %o A022575 (Magma) Coefficients(&*[(1+x^m)^10:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // _G. C. Greubel_, Feb 26 2018 %Y A022575 Column k=10 of A286335. %Y A022575 Cf. A000009. %K A022575 nonn %O A022575 0,2 %A A022575 _N. J. A. Sloane_