This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A022576 #22 Sep 08 2022 08:44:46 %S A022576 1,11,66,297,1122,3740,11341,31922,84535,212707,512369,1188353, %T A022576 2666048,5807296,12319659,25518757,51725289,102786959,200568907, %U A022576 384847199,727019260,1353654049,2486522369,4509972819,8083287432,14326409152,25124415635,43622744968,75026666913,127882738709 %N A022576 Expansion of Product_{m>=1} (1+x^m)^11. %H A022576 Seiichi Manyama, <a href="/A022576/b022576.txt">Table of n, a(n) for n = 0..1000</a> %F A022576 a(n) ~ (11/3)^(1/4) * exp(Pi * sqrt(11*n/3)) / (128 * n^(3/4)). - _Vaclav Kotesovec_, Mar 05 2015 %F A022576 a(0) = 1, a(n) = (11/n)*Sum_{k=1..n} A000593(k)*a(n-k) for n > 0. - _Seiichi Manyama_, Apr 03 2017 %t A022576 nmax=50; CoefficientList[Series[Product[(1+q^m)^11,{m,1,nmax}],{q,0,nmax}],q] (* _Vaclav Kotesovec_, Mar 05 2015 *) %o A022576 (PARI) m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+q^n)^11)) \\ _G. C. Greubel_, Feb 26 2018 %o A022576 (Magma) Coefficients(&*[(1+x^m)^11:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // _G. C. Greubel_, Feb 26 2018 %Y A022576 Column k=11 of A286335. %Y A022576 Cf. A000009. %K A022576 nonn %O A022576 0,2 %A A022576 _N. J. A. Sloane_