cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022579 Expansion of Product_{m>=1} (1+x^m)^14.

This page as a plain text file.
%I A022579 #29 Oct 09 2023 11:51:01
%S A022579 1,14,105,574,2576,10052,35273,113794,342699,974176,2635955,6833540,
%T A022579 17061345,41197422,96544003,220212384,490104727,1066552228,2273590095,
%U A022579 4755188704,9771319068,19751596934,39317784863,77150246040,149357609184,285497384004,539227765104,1006978117880
%N A022579 Expansion of Product_{m>=1} (1+x^m)^14.
%H A022579 Seiichi Manyama, <a href="/A022579/b022579.txt">Table of n, a(n) for n = 0..10000</a>
%F A022579 a(n) ~ (7/6)^(1/4) * exp(Pi * sqrt(14*n/3)) / (256 * n^(3/4)). - _Vaclav Kotesovec_, Mar 05 2015
%F A022579 a(0) = 1, a(n) = (14/n)*Sum_{k=1..n} A000593(k)*a(n-k) for n > 0. - _Seiichi Manyama_, Apr 03 2017
%F A022579 G.f. A(x) = (1/2)*( G(sqrt(x)) + G(-sqrt(x)) )/G(x^4), where G(x) = Product_{n >= 1} 1/(1 - x^n)^4 is the g.f. of A023003 (see also A000727). - _Peter Bala_, Oct 05 2023
%t A022579 nmax=50; CoefficientList[Series[Product[(1+q^m)^14,{m,1,nmax}],{q,0,nmax}],q] (* _Vaclav Kotesovec_, Mar 05 2015 *)
%o A022579 (PARI) m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+q^n)^14)) \\ _G. C. Greubel_, Feb 25 2018
%o A022579 (Magma) Coefficients(&*[(1+x^m)^14:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // _G. C. Greubel_, Feb 25 2018
%Y A022579 Column k=14 of A286335. Cf. A000707, A023003.
%K A022579 nonn,easy
%O A022579 0,2
%A A022579 _N. J. A. Sloane_